Coatings of graphene nanoplatelets (GNPs) were deposited on a low density polyethylene (LDPE) substrate by a micromechanical method based on rubbing graphite platelets against the surface of the polymer. Transmission electron microscopy measurements reveal that the coatings were composed of nanoplatelets containing 13–30 graphene layers. Thermal gravimetric analysis shows that the investigated GNP coatings on LDPE (GNP/LDPE) samples are thermally stable up to 250C. Optical spectra of these samples, compared to those of pristine LDPE in the ultraviolet- visible-near-infrared range, indicate an increase in both reflectance and absorptance. On the other hand, the coating is able to markedly improve the surface conductivity of the polymeric substrate, indeed in the case of electrical contacts in the coplanar configuration (1 cm long and spaced 1 mm), the resistance of LDPE is 1015X, while that of GNP/LDPE is 670X. Electrical measurements under white light illumination point out a decrease in the conductance and a linear behavior of the photoconductance as a function of the optical power density. GNP/LDPE materials can be used for their optical, electrical, thermal, and flexibility properties in large area plastic electronics and optoelectronics. Published by the AVS
Optical and electrical characterizations of graphene nanoplatelet coatings on low density polyethylene / Palomba, Mariano; Longo, Angela; Carotenuto, Gianfranco; Coscia, Ubaldo; Ambrosone, Giuseppina; Rusciano, Giulia; Nenna, Giuseppe; Barucca, Gianni; Longobardo, Luigi. - In: JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. B. - ISSN 1071-1023. - 36:1(2018). [10.1116/1.4998570]
Optical and electrical characterizations of graphene nanoplatelet coatings on low density polyethylene
Longo Angela;Carotenuto Gianfranco;Coscia Ubaldo
;Ambrosone Giuseppina;Rusciano Giulia;Longobardo Luigi
2018
Abstract
Coatings of graphene nanoplatelets (GNPs) were deposited on a low density polyethylene (LDPE) substrate by a micromechanical method based on rubbing graphite platelets against the surface of the polymer. Transmission electron microscopy measurements reveal that the coatings were composed of nanoplatelets containing 13–30 graphene layers. Thermal gravimetric analysis shows that the investigated GNP coatings on LDPE (GNP/LDPE) samples are thermally stable up to 250C. Optical spectra of these samples, compared to those of pristine LDPE in the ultraviolet- visible-near-infrared range, indicate an increase in both reflectance and absorptance. On the other hand, the coating is able to markedly improve the surface conductivity of the polymeric substrate, indeed in the case of electrical contacts in the coplanar configuration (1 cm long and spaced 1 mm), the resistance of LDPE is 1015X, while that of GNP/LDPE is 670X. Electrical measurements under white light illumination point out a decrease in the conductance and a linear behavior of the photoconductance as a function of the optical power density. GNP/LDPE materials can be used for their optical, electrical, thermal, and flexibility properties in large area plastic electronics and optoelectronics. Published by the AVSFile | Dimensione | Formato | |
---|---|---|---|
Optical and electrical characterizations of graphene nanoplatelet coatings on low density polyethylene.pdf
accesso aperto
Licenza:
Accesso privato/ristretto
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.