the computation of the structural response of periodic structures, focusing on cylinders. Taking into account the periodicity of the system, the Bloch-Floquet theorem can be applied leading to an eigenvalue problem, whose solutions are the waves propagation constants and wavemodes of the periodic structure. Two different approaches are presented, instead, for computing the forced response of stiffened structures. The first one, dealing with a Wave Finite Element (WFE) methodology, proved to drastically reduce the problem size in terms of degrees of freedom, with respect to more mature techniques such as the classic FEM. The other approach presented enables the use of the previous technique even when the whole structure can not be considered as periodic. This is the case when two waveguides are connected through one or more joints and/or different waveguides are connected each other. Any approach presented can deal with deterministic excitations and responses in any point. The results show a good agreement with FEM full models. The drastic reduction of DoF (degrees of freedom) is evident, even more when the number of repetitive substructures is high and the substructures itself is modelled in order to get the lowest number of DoF at the boundaries.
A WFE and hybrid FE/WFE technique for the forced response of stiffened cylinders / Errico, Fabrizio; Ichchou, M.; De Rosa, Sergio; Bareille, O.; Franco, F.. - In: ADVANCES IN AIRCRAFT AND SPACECRAFT SCIENCE. - ISSN 2287-528X. - 5:1(2018), pp. 1-19. [10.12989/aas.2018.5.1.001]
A WFE and hybrid FE/WFE technique for the forced response of stiffened cylinders
De Rosa, Sergio;Franco, F.
2018
Abstract
the computation of the structural response of periodic structures, focusing on cylinders. Taking into account the periodicity of the system, the Bloch-Floquet theorem can be applied leading to an eigenvalue problem, whose solutions are the waves propagation constants and wavemodes of the periodic structure. Two different approaches are presented, instead, for computing the forced response of stiffened structures. The first one, dealing with a Wave Finite Element (WFE) methodology, proved to drastically reduce the problem size in terms of degrees of freedom, with respect to more mature techniques such as the classic FEM. The other approach presented enables the use of the previous technique even when the whole structure can not be considered as periodic. This is the case when two waveguides are connected through one or more joints and/or different waveguides are connected each other. Any approach presented can deal with deterministic excitations and responses in any point. The results show a good agreement with FEM full models. The drastic reduction of DoF (degrees of freedom) is evident, even more when the number of repetitive substructures is high and the substructures itself is modelled in order to get the lowest number of DoF at the boundaries.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.