Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.
Fisher metric, geometric entanglement, and spin networks / Chirco, Goffredo; Mele, Fabio M.; Oriti, Daniele; Vitale, Patrizia. - In: PHYSICAL REVIEW D. - ISSN 2470-0010. - 97:4(2018). [10.1103/PhysRevD.97.046015]
Fisher metric, geometric entanglement, and spin networks
Chirco, Goffredo;Vitale, Patrizia
2018
Abstract
Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of non-local correlations between two non-adjacent regions of a generic spin network graph characterized by the bipartite unfolding of an Intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and non-local level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.File | Dimensione | Formato | |
---|---|---|---|
1703.05231.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Pre-print
Licenza:
Accesso privato/ristretto
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.