During high-solids anaerobic digestion (HS-AD) of the organic fraction of municipal solid waste (OFMSW), an important total solid (TS) removal occurs, leading to the modification of the reactor content mass/volume, in contrast to ‘wet’ anaerobic digestion (AD). Therefore, HS-AD mathematical simulations need to be approached differently than ‘wet’ AD simulations. This study aimed to develop a modelling tool based on the anaerobic digestion model 1 (ADM1) capable of simulating the TS and the reactor mass/volume dynamics in the HS-AD of OFMSW. Four hypotheses were used, including the effects of apparent concentrations at high TS. The model simulated adequately HS-AD of OFMSW in batch and continuous mode, particularly the evolution of TS, reactor mass, ammonia and volatile fatty acids. By adequately simulating the reactor content mass/volume and the TS, this model might bring further insight about potentially inhibitory mechanisms (i.e. NH3 buildup and/or acidification) occurring in HS-AD of OFMSW.
High-solids anaerobic digestion model for homogenized reactors / Pastor-Poquet, Vicente; Papirio, Stefano; Steyer, Jean-Philippe; Trably, Eric; Escudié, Renaud; Esposito, Giovanni. - In: WATER RESEARCH. - ISSN 0043-1354. - 142:(2018), pp. 501-511. [10.1016/j.watres.2018.06.016]
High-solids anaerobic digestion model for homogenized reactors
Papirio, StefanoSupervision
;Esposito, Giovanni
2018
Abstract
During high-solids anaerobic digestion (HS-AD) of the organic fraction of municipal solid waste (OFMSW), an important total solid (TS) removal occurs, leading to the modification of the reactor content mass/volume, in contrast to ‘wet’ anaerobic digestion (AD). Therefore, HS-AD mathematical simulations need to be approached differently than ‘wet’ AD simulations. This study aimed to develop a modelling tool based on the anaerobic digestion model 1 (ADM1) capable of simulating the TS and the reactor mass/volume dynamics in the HS-AD of OFMSW. Four hypotheses were used, including the effects of apparent concentrations at high TS. The model simulated adequately HS-AD of OFMSW in batch and continuous mode, particularly the evolution of TS, reactor mass, ammonia and volatile fatty acids. By adequately simulating the reactor content mass/volume and the TS, this model might bring further insight about potentially inhibitory mechanisms (i.e. NH3 buildup and/or acidification) occurring in HS-AD of OFMSW.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0043135418304603-main.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
2.29 MB
Formato
Adobe PDF
|
2.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.