We give a constructive proof of the existence of the almost revlex ideal $J\subset K[x_1,\dots,x_n]$ with the same Hilbert function of a complete intersection generated by $n$ forms of degrees $d_1\leq \dots \leq d_n$, when for every $i\geq 4$ the degrees $d_1,\dots,d_n$ satisfy the condition $d_i\geq \bar u_{i-1}+1=\min\Bigl\{\Big\lfloor\frac{\sum_{j=1}^{i-1}d_j-i+1}{2}\Big\rfloor, \sum_{j=1}^{i-2} d_j-i+2\Bigr\}+1.$
Construction of almost revlex ideals with Hilbert function of some complete intersections / Bertone, Cristina; Cioffi, Francesca. - 43:(2018), pp. 55-58. (Intervento presentato al convegno XVI EACA (Encuentros de Algebra Computacional y Aplicaciones) tenutosi a Zaragoza, Spain nel July 3-6, 2018).
Construction of almost revlex ideals with Hilbert function of some complete intersections
Cioffi Francesca
2018
Abstract
We give a constructive proof of the existence of the almost revlex ideal $J\subset K[x_1,\dots,x_n]$ with the same Hilbert function of a complete intersection generated by $n$ forms of degrees $d_1\leq \dots \leq d_n$, when for every $i\geq 4$ the degrees $d_1,\dots,d_n$ satisfy the condition $d_i\geq \bar u_{i-1}+1=\min\Bigl\{\Big\lfloor\frac{\sum_{j=1}^{i-1}d_j-i+1}{2}\Big\rfloor, \sum_{j=1}^{i-2} d_j-i+2\Bigr\}+1.$I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.