This paper deals with the problem of the stabilization of uncertain quadratic systems via state feedback. The main contribution of the paper is a control design methodology which enables to find a robust controller guaranteeing for the closed-loop system: i) the local asymptotic stability of the zero equilibrium point; ii) the inclusion of a given polytopic region into the domain of attraction of the zero equilibrium point. This design procedure involves the solution of a Linear Matrix Inequalities (LMIs) feasibility problem, which can be efficiently solved via available optimization algorithms. A numerical example shows the effectiveness of the proposed methodology.
Robust control of quadratic systems with norm bounded uncertainties / Amato, Francesco; Colacino, Domenico; Cosentino, Carlo; Merola, Alessio. - (2013), pp. 1082-1086. (Intervento presentato al convegno 2013 21st Mediterranean Conference on Control and Automation, MED 2013 tenutosi a Platanias-Chania, Crete, GREECE nel 25-28 giugno 2013) [10.1109/MED.2013.6608855].
Robust control of quadratic systems with norm bounded uncertainties
Amato, Francesco;
2013
Abstract
This paper deals with the problem of the stabilization of uncertain quadratic systems via state feedback. The main contribution of the paper is a control design methodology which enables to find a robust controller guaranteeing for the closed-loop system: i) the local asymptotic stability of the zero equilibrium point; ii) the inclusion of a given polytopic region into the domain of attraction of the zero equilibrium point. This design procedure involves the solution of a Linear Matrix Inequalities (LMIs) feasibility problem, which can be efficiently solved via available optimization algorithms. A numerical example shows the effectiveness of the proposed methodology.File | Dimensione | Formato | |
---|---|---|---|
paper robust NLQS.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
112.13 kB
Formato
Adobe PDF
|
112.13 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.