We deal with some finite-time control problems for discrete-time linear systems. First we provide necessary and sufficient conditions for finite-time stability; these conditions require either the computation of the state transition matrix of the system or the solution of a certain difference Lyapunov equation (or inequality). The design problem, i.e. the problem of finding a state feedback controller, which stabilizes the closed loop system in the finite-time sense, is then addressed. The way these conditions can be solved numerically is finally considered.

Finite-time stability of discrete-time systems / Amato, F.; Carbone, M.; Ariola, M.; Cosentino, C.. - (2004), pp. 1440-1444. (Intervento presentato al convegno 2004 American Control Conference tenutosi a Boston, MA, USA nel 30 giugno-2 luglio 2004) [10.23919/ACC.2004.1386778].

Finite-time stability of discrete-time systems

Amato, F.;
2004

Abstract

We deal with some finite-time control problems for discrete-time linear systems. First we provide necessary and sufficient conditions for finite-time stability; these conditions require either the computation of the state transition matrix of the system or the solution of a certain difference Lyapunov equation (or inequality). The design problem, i.e. the problem of finding a state feedback controller, which stabilizes the closed loop system in the finite-time sense, is then addressed. The way these conditions can be solved numerically is finally considered.
2004
0-7803-8335-4
Finite-time stability of discrete-time systems / Amato, F.; Carbone, M.; Ariola, M.; Cosentino, C.. - (2004), pp. 1440-1444. (Intervento presentato al convegno 2004 American Control Conference tenutosi a Boston, MA, USA nel 30 giugno-2 luglio 2004) [10.23919/ACC.2004.1386778].
File in questo prodotto:
File Dimensione Formato  
0258_WeP04.4.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 156.54 kB
Formato Adobe PDF
156.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/729319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact