Hydrolysis of hemicelluloses with acid catalysts yield different sugar monomers and oligomers, depending on the substrate as well as the process design. The hydrolysis kinetics are typically rather slow, which leads to requirements of long residence times, i.e. slow flow rates, in order to achieve adequate conversion. Hydrolysis experiments of two different polysaccharides – o-acetylgalactoglucomannan (GGM) and inulin - were conducted in an isothermal tubular continuous reactor in laboratory scale, working in the laminar flow regime. A dynamic mass balance-based reactor model was developed, including convection and molecular diffusion in axial and radial directions, as well as the self-accelerating kinetics of the reaction. The model gave a very satisfactory description of the experimental data. The behavior of the laminar flow reactor in the hemicellulose hydrolysis was further illustrated by numerical simulations.
Modelling of homogeneously catalyzed hemicelluloses hydrolysis in a laminar-flow reactor / Pérez Nebreda, A.; Russo, Vincenzo; Di Serio, M.; Salmi, T.; Grénman, H.. - In: CHEMICAL ENGINEERING SCIENCE. - ISSN 0009-2509. - 195:(2019), pp. 758-766. [10.1016/j.ces.2018.10.021]
Modelling of homogeneously catalyzed hemicelluloses hydrolysis in a laminar-flow reactor
Russo, Vincenzo;Di Serio, M.;
2019
Abstract
Hydrolysis of hemicelluloses with acid catalysts yield different sugar monomers and oligomers, depending on the substrate as well as the process design. The hydrolysis kinetics are typically rather slow, which leads to requirements of long residence times, i.e. slow flow rates, in order to achieve adequate conversion. Hydrolysis experiments of two different polysaccharides – o-acetylgalactoglucomannan (GGM) and inulin - were conducted in an isothermal tubular continuous reactor in laboratory scale, working in the laminar flow regime. A dynamic mass balance-based reactor model was developed, including convection and molecular diffusion in axial and radial directions, as well as the self-accelerating kinetics of the reaction. The model gave a very satisfactory description of the experimental data. The behavior of the laminar flow reactor in the hemicellulose hydrolysis was further illustrated by numerical simulations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.