Although various researches have demonstrated that Social Networks offer a great opportunity to detect and manage emergencies and disasters in real life applications, in this paper we will show how the use of Multimedia Big Data extracted from modern On-Line Social Nets may enhance both the real time detection and the alerts diffusion in a well defined geographic area. In particular, we propose a Multimedia Big Data system that use both an incremental clustering event detection approach enriched with the analysis of multimedia content and a bio-inspired influence analysis technique, to support alert spread over a social network. Experiments are carried out on a real case study.

Extreme events management using multimedia social networks / Amato, Flora; Moscato, Vincenzo; Picariello, Antonio; Sperli’Ì, Giancarlo. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - 94:(2019), pp. 444-452. [10.1016/j.future.2018.11.035]

Extreme events management using multimedia social networks

Amato, Flora;Moscato, Vincenzo;Picariello, Antonio;Sperli’ì, Giancarlo
2019

Abstract

Although various researches have demonstrated that Social Networks offer a great opportunity to detect and manage emergencies and disasters in real life applications, in this paper we will show how the use of Multimedia Big Data extracted from modern On-Line Social Nets may enhance both the real time detection and the alerts diffusion in a well defined geographic area. In particular, we propose a Multimedia Big Data system that use both an incremental clustering event detection approach enriched with the analysis of multimedia content and a bio-inspired influence analysis technique, to support alert spread over a social network. Experiments are carried out on a real case study.
2019
Extreme events management using multimedia social networks / Amato, Flora; Moscato, Vincenzo; Picariello, Antonio; Sperli’Ì, Giancarlo. - In: FUTURE GENERATION COMPUTER SYSTEMS. - ISSN 0167-739X. - 94:(2019), pp. 444-452. [10.1016/j.future.2018.11.035]
File in questo prodotto:
File Dimensione Formato  
CINI1.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/748556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 29
social impact