Ca2.90Me2+0.10(PO4)2 (with Me = Mn, Ni, Cu) β-tricalcium phosphate (TCP) powders were synthesized by solid-state reaction at T = 1200 °C and investigated by means of a combination of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, and luminescence spectroscopy. SEM morphological analysis showed the run products to consist of sub spherical microcrystalline aggregates, while EDS semi-quantitative analysis confirmed the nominal Ca/Me composition. The unit cell and the space group were determined by X-ray powder diffraction data showing that all the compounds crystallize in the rhombohedral R3c whitlockite-type structure, with the following unit cell constants: a = b = 10.41014(19) Å, c = 37.2984(13) Å, and cell volume V = 3500.53(15) Å3 (Mn); a = b = 10.39447(10) Å, c = 37.2901(8) Å; V = 3489.22(9) Å3 (Ni); a = b = 10.40764(8) Å, c = 37.3158(6) Å, V = 3500.48(7) Å3 (Cu). The investigation was completed with the structural refinement by the Rietveld method. The FTIR spectra are similar to those of the end-member Ca β-tricalcium phosphate (TCP), in agreement with the structure determination, and show minor band shifts of the (PO4) modes with the increasing size of the replacing Me2+ cation. Luminescence spectra and decay curves revealed significant luminescence properties for Mn and Cu phases.
New Ca2.90(Me2+)0.10(PO4)2 β-tricalcium Phosphates with Me2+ = Mn, Ni, Cu: Synthesis, Crystal-Chemistry, and Luminescence Properties / Altomare, Angela; Rizzi, Rosanna; Rossi, Manuela; El Khouri, Asmaa; Elaatmani, Mohammed; Paterlini, Veronica; Della Ventura, Giancarlo; Capitelli, Francesco. - In: CRYSTALS. - ISSN 2073-4352. - 9:6(2019), p. 288. [10.3390/cryst9060288]
New Ca2.90(Me2+)0.10(PO4)2 β-tricalcium Phosphates with Me2+ = Mn, Ni, Cu: Synthesis, Crystal-Chemistry, and Luminescence Properties
Rossi, ManuelaMembro del Collaboration Group
;Capitelli, Francesco
2019
Abstract
Ca2.90Me2+0.10(PO4)2 (with Me = Mn, Ni, Cu) β-tricalcium phosphate (TCP) powders were synthesized by solid-state reaction at T = 1200 °C and investigated by means of a combination of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, and luminescence spectroscopy. SEM morphological analysis showed the run products to consist of sub spherical microcrystalline aggregates, while EDS semi-quantitative analysis confirmed the nominal Ca/Me composition. The unit cell and the space group were determined by X-ray powder diffraction data showing that all the compounds crystallize in the rhombohedral R3c whitlockite-type structure, with the following unit cell constants: a = b = 10.41014(19) Å, c = 37.2984(13) Å, and cell volume V = 3500.53(15) Å3 (Mn); a = b = 10.39447(10) Å, c = 37.2901(8) Å; V = 3489.22(9) Å3 (Ni); a = b = 10.40764(8) Å, c = 37.3158(6) Å, V = 3500.48(7) Å3 (Cu). The investigation was completed with the structural refinement by the Rietveld method. The FTIR spectra are similar to those of the end-member Ca β-tricalcium phosphate (TCP), in agreement with the structure determination, and show minor band shifts of the (PO4) modes with the increasing size of the replacing Me2+ cation. Luminescence spectra and decay curves revealed significant luminescence properties for Mn and Cu phases.File | Dimensione | Formato | |
---|---|---|---|
2019. New Ca2.90(Me2+)0.10(PO4)2 -tricalcium Phosphates.pdf
solo utenti autorizzati
Descrizione: 2019. New Ca2.90(Me2+)0.10(PO4)2 -tricalcium Phosphates
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
4.19 MB
Formato
Adobe PDF
|
4.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.