The structure of the Taiwan mountain belt is thought to be that of an imbricate thrust and fold belt developed in a forward breaking sequence above a shallowly dipping basal detachment. In recent years, however, a growing amount of seismicity data from the internal part of the mountain belt indicates the existence of widespread fault activity in the middle and lower crust, suggesting that deeper levels of the crust must be involved in the deformation than predicted by the shallow detachment, imbricate thrust belt model. To address this issue, we present new geological mapping, together with earthquake focal mechanism and seismic energy release data from the central part of Taiwan. We concur with the interpretation that the foreland basin part of the Western Foothills comprises an imbricate thrust system that is developing as a forward breaking sequence that is structurally and kinematically linked to a basal detachment at between 7 and 10 km depth. To the east of the foreland basin, however, in the Hsuehshan and Central Ranges, our data show the presence of two fault systems. An earlier, inactive thrust system with a well‐developed cleavage is cut by a system of steeply dipping active faults that penetrate to a depth of 25 to 30 km or more. In the Hsuehshan Range, the second fault system is best represented by a structural and kinematic model in which this part of the mountain belt forms a zone of transpression with a structural architecture similar to that of a crustal‐scale positive flower structure. Eastward, in the Central Range, Mesozoic basement rocks are over thrusting strongly folded and cleaved deep water sediments of the first, now inactive, thrust system. The involvement of deep crustal levels and Mesozoic basement in the second fault system is suggestive of the reactivation of preexisting basin‐bounding faults that were located on the Eurasian continental margin.
The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data / Brown, D.; Alvarez-Marron, J.; Schimmel, M.; Wu, Y. -M.; Camanni, G.. - In: TECTONICS. - ISSN 0278-7407. - 31:5(2012), pp. n/a-n/a. [10.1029/2012TC003156]
The structure and kinematics of the central Taiwan mountain belt derived from geological and seismicity data
Camanni, G.
2012
Abstract
The structure of the Taiwan mountain belt is thought to be that of an imbricate thrust and fold belt developed in a forward breaking sequence above a shallowly dipping basal detachment. In recent years, however, a growing amount of seismicity data from the internal part of the mountain belt indicates the existence of widespread fault activity in the middle and lower crust, suggesting that deeper levels of the crust must be involved in the deformation than predicted by the shallow detachment, imbricate thrust belt model. To address this issue, we present new geological mapping, together with earthquake focal mechanism and seismic energy release data from the central part of Taiwan. We concur with the interpretation that the foreland basin part of the Western Foothills comprises an imbricate thrust system that is developing as a forward breaking sequence that is structurally and kinematically linked to a basal detachment at between 7 and 10 km depth. To the east of the foreland basin, however, in the Hsuehshan and Central Ranges, our data show the presence of two fault systems. An earlier, inactive thrust system with a well‐developed cleavage is cut by a system of steeply dipping active faults that penetrate to a depth of 25 to 30 km or more. In the Hsuehshan Range, the second fault system is best represented by a structural and kinematic model in which this part of the mountain belt forms a zone of transpression with a structural architecture similar to that of a crustal‐scale positive flower structure. Eastward, in the Central Range, Mesozoic basement rocks are over thrusting strongly folded and cleaved deep water sediments of the first, now inactive, thrust system. The involvement of deep crustal levels and Mesozoic basement in the second fault system is suggestive of the reactivation of preexisting basin‐bounding faults that were located on the Eurasian continental margin.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.