The 1:5000 scale Geological Map of the Fontane talc mineralization (FTM) aims to give new information about the origin and geological structure of an important talc mineralization occurring in the axial sector of the Italian Western Alps. The FTM is hosted within a pre-Carboniferous polymetamorphic complex which was deformed and metamorphosed during both Variscan and Alpine orogenesis, and is part of the Dora-Maira continental crust. Field mapping and underground investigations highlight that the talc bodies (i) never crop out but occur at depth along a well-defined lithostratigraphic association between micaschist, marble and gneiss and (ii) were deformed during different Alpine-related deformation phases (i.e. D1, D2 and D3 syn-metamorphic phases and post-metamorphic extensional faulting). The here defined lithostratigraphic and structural characterization of talc bodies, is an input for further research into the geodynamic context of where talc forms and for new mineral exploration outside the mapped area.
Geology of the Fontane talc mineralization (Germanasca valley, Italian Western Alps) / Cadoppi, P.; Camanni, G.; Balestro, G.; Perrone, G.. - In: JOURNAL OF MAPS. - ISSN 1744-5647. - 12:5(2016), pp. 1170-1177. [10.1080/17445647.2016.1142480]
Geology of the Fontane talc mineralization (Germanasca valley, Italian Western Alps)
Camanni G.;
2016
Abstract
The 1:5000 scale Geological Map of the Fontane talc mineralization (FTM) aims to give new information about the origin and geological structure of an important talc mineralization occurring in the axial sector of the Italian Western Alps. The FTM is hosted within a pre-Carboniferous polymetamorphic complex which was deformed and metamorphosed during both Variscan and Alpine orogenesis, and is part of the Dora-Maira continental crust. Field mapping and underground investigations highlight that the talc bodies (i) never crop out but occur at depth along a well-defined lithostratigraphic association between micaschist, marble and gneiss and (ii) were deformed during different Alpine-related deformation phases (i.e. D1, D2 and D3 syn-metamorphic phases and post-metamorphic extensional faulting). The here defined lithostratigraphic and structural characterization of talc bodies, is an input for further research into the geodynamic context of where talc forms and for new mineral exploration outside the mapped area.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.