We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa2Cu3O6 and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to similar to 0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials
Experimental Determination of Momentum-Resolved Electron-Phonon Coupling / Rossi, Matteo; Arpaia, Riccardo; Fumagalli, Roberto; Moretti Sala, Marco; Betto, Davide; Kummer, Kurt; De Luca, Gabriella M.; van den Brink, Jeroen; Salluzzo, Marco; Brookes, Nicholas B.; Braicovich, Lucio; Giacomo Ghiringhelli, And. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 123:(2019), p. 027001. [10.1103/PhysRevLett.123.027001]
Experimental Determination of Momentum-Resolved Electron-Phonon Coupling
Riccardo Arpaia;Gabriella M. De Luca;Marco Salluzzo;
2019
Abstract
We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa2Cu3O6 and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to similar to 0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materialsFile | Dimensione | Formato | |
---|---|---|---|
PhysRevLett.123.pdf
solo utenti autorizzati
Licenza:
Creative commons
Dimensione
387.83 kB
Formato
Adobe PDF
|
387.83 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.