We compute the relaxation of the total energy related to a variational model for nematic elastomers, involving a nonlinear elastic mechanical energy depending on the orientation of the molecules of the nematic elastomer, and a nematic Oseen--Frank energy in the deformed configuration. The main assumptions are that the quasiconvexification of the mechanical term is polyconvex and that the deformation belongs to an Orlicz-Sobolev space with an integrability just above the space dimension minus one, and does not present cavitation. We benefit from the fine properties of orientation-preserving maps satisfying that regularity requirement proven in cite{HS} and extend the result of cite{MCOl} to Orlicz spaces with a suitable growth condition at infinity.

Relaxation of nonlinear elastic energies related to Orlicz-Sobolev nematic elastomers / Scilla, Giovanni; Stroffolini, Bianca. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1720-0768. - 31:(2020), pp. 349-389. [10.4171/RLM/895]

Relaxation of nonlinear elastic energies related to Orlicz-Sobolev nematic elastomers

Giovanni Scilla
;
Bianca Stroffolini
2020

Abstract

We compute the relaxation of the total energy related to a variational model for nematic elastomers, involving a nonlinear elastic mechanical energy depending on the orientation of the molecules of the nematic elastomer, and a nematic Oseen--Frank energy in the deformed configuration. The main assumptions are that the quasiconvexification of the mechanical term is polyconvex and that the deformation belongs to an Orlicz-Sobolev space with an integrability just above the space dimension minus one, and does not present cavitation. We benefit from the fine properties of orientation-preserving maps satisfying that regularity requirement proven in cite{HS} and extend the result of cite{MCOl} to Orlicz spaces with a suitable growth condition at infinity.
2020
Relaxation of nonlinear elastic energies related to Orlicz-Sobolev nematic elastomers / Scilla, Giovanni; Stroffolini, Bianca. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1720-0768. - 31:(2020), pp. 349-389. [10.4171/RLM/895]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/777502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact