Pituitary adenomas are among the most frequent intracranial tumors. They may exhibit clinically aggressive behavior, with recurrent disease and resistance to multimodal therapy. The ki-67 labeling index represents a proliferative marker which correlates with pituitary adenoma aggressiveness. Aim of our study was to assess the accuracy of machine learning analysis of texture-derived parameters from pituitary adenomas preoperative MRI for the prediction of ki-67 proliferation index class.

Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning / Ugga, L.; Cuocolo, R.; Solari, D.; Guadagno, E.; D'Amico, A.; Somma, T.; Cappabianca, P.; Del Basso De Caro, M; Cavallo, L. M.; Brunetti, A.. - In: NEURORADIOLOGY. - ISSN 0028-3940. - 61:12(2019), pp. 1365-1373. [10.1007/s00234-019-02266-1]

Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning

Ugga L.;Cuocolo R.
;
Solari D.;Guadagno E.;Somma T.;Cappabianca P.;Del Basso De Caro M;Cavallo L. M.;Brunetti A.
2019

Abstract

Pituitary adenomas are among the most frequent intracranial tumors. They may exhibit clinically aggressive behavior, with recurrent disease and resistance to multimodal therapy. The ki-67 labeling index represents a proliferative marker which correlates with pituitary adenoma aggressiveness. Aim of our study was to assess the accuracy of machine learning analysis of texture-derived parameters from pituitary adenomas preoperative MRI for the prediction of ki-67 proliferation index class.
2019
Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning / Ugga, L.; Cuocolo, R.; Solari, D.; Guadagno, E.; D'Amico, A.; Somma, T.; Cappabianca, P.; Del Basso De Caro, M; Cavallo, L. M.; Brunetti, A.. - In: NEURORADIOLOGY. - ISSN 0028-3940. - 61:12(2019), pp. 1365-1373. [10.1007/s00234-019-02266-1]
File in questo prodotto:
File Dimensione Formato  
Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/781058
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 61
social impact