In this paper we prove that the ball maximizes the first eigenvalue of the Robin Laplacian operator with negative boundary parameter, among all convex sets of R-n with prescribed perimeter. The key of the proof is a dearrangement procedure of the first eigenfunction of the ball on the level sets of the distance function to the boundary of the convex set, which controls the boundary and the volume energies of the Rayleigh quotient.

A sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter / Bucur, Dorin; Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina. - In: RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI. - ISSN 2037-4631. - 30:(2019), pp. 665-676. [10.4171/RLM/866]

A sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter

Bucur Dorin;Ferone Vincenzo;Nitsch Carlo;Trombetti Cristina
2019

Abstract

In this paper we prove that the ball maximizes the first eigenvalue of the Robin Laplacian operator with negative boundary parameter, among all convex sets of R-n with prescribed perimeter. The key of the proof is a dearrangement procedure of the first eigenfunction of the ball on the level sets of the distance function to the boundary of the convex set, which controls the boundary and the volume energies of the Rayleigh quotient.
2019
A sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter / Bucur, Dorin; Ferone, Vincenzo; Nitsch, Carlo; Trombetti, Cristina. - In: RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI. - ISSN 2037-4631. - 30:(2019), pp. 665-676. [10.4171/RLM/866]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/789003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact