The management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities. Among the tested compounds, the dihydroxyindole-carboxamide 5 was able to inhibit in the low micromolar range (1–18 μM) multiple functions of IN, including functional IN-IN interactions, IN-LEDGF/p75 binding and IN catalytic activity. Docking and site-directed mutagenesis studies have suggested that compound 5 binds to a previously described HIV-1 IN allosteric pocket. These observations indicate that 5 is structurally and mechanistically distinct from the published allosteric HIV-1 IN inhibitors. Moreover, compound 5 also inhibited HIV-1 RNase H function, classifying this molecule as a dual HIV-1 IN and RNase H inhibitor able to impair the HIV-1 virus replication in cell culture. Overall, we identified a new scaffold as a suitable platform for the development of novel dual HIV-1 inhibitors.
Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 Integrase and Reverse Transcriptase associated Ribonuclease H inhibitors / Esposito, F.; Sechi, M.; Pala, N.; Sanna, A.; Koneru, P. C.; Kvaratskhelia, M.; Naesens, L.; Corona, A.; Grandi, N.; di Santo, R.; D'Amore, V. M.; Di Leva, F. S.; Novellino, E.; Cosconati, S.; Tramontano, E.. - In: ANTIVIRAL RESEARCH. - ISSN 0166-3542. - 174:(2020), p. 104671. [10.1016/j.antiviral.2019.104671]
Discovery of dihydroxyindole-2-carboxylic acid derivatives as dual allosteric HIV-1 Integrase and Reverse Transcriptase associated Ribonuclease H inhibitors
D'Amore V. M.;Di Leva F. S.;Novellino E.;
2020
Abstract
The management of Human Immunodeficiency Virus type 1 (HIV-1) infection requires life-long treatment that is associated with chronic toxicity and possible selection of drug-resistant strains. A new opportunity for drug intervention is offered by antivirals that act as allosteric inhibitors targeting two viral functions (dual inhibitors). In this work, we investigated the effects of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) derivatives on both HIV-1 Integrase (IN) and Reverse Transcriptase associated Ribonuclease H (RNase H) activities. Among the tested compounds, the dihydroxyindole-carboxamide 5 was able to inhibit in the low micromolar range (1–18 μM) multiple functions of IN, including functional IN-IN interactions, IN-LEDGF/p75 binding and IN catalytic activity. Docking and site-directed mutagenesis studies have suggested that compound 5 binds to a previously described HIV-1 IN allosteric pocket. These observations indicate that 5 is structurally and mechanistically distinct from the published allosteric HIV-1 IN inhibitors. Moreover, compound 5 also inhibited HIV-1 RNase H function, classifying this molecule as a dual HIV-1 IN and RNase H inhibitor able to impair the HIV-1 virus replication in cell culture. Overall, we identified a new scaffold as a suitable platform for the development of novel dual HIV-1 inhibitors.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.