The lipopolysaccharide (LPS) O-antigen structure of the plant pathogen Rhizobium radiobacter strain TT9 and its possible role in a plant-microbe interaction was investigated. The analyses disclosed the presence of two O-antigens, named Poly1 and Poly2. The repetitive unit of Poly2 constitutes a 4-α-l-rhamnose linked to a 3-α-d-fucose residue. Surprisingly, Poly1 turned out to be a novel type of biopolymer in which the repeating unit is formed by a monosaccharide and an amino-acid derivative, so that the polymer has alternating glycosidic and amidic bonds joining the two units: 4-amino-4-deoxy-3-O-methyl-d-fucose and (2'R,3'R,4'S)-N-methyl-3',4'-dihydroxy-3'-methyl-5'-oxoproline). Differently from the O-antigens of LPSs from other pathogenic Gram-negative bacteria, these two O-antigens do not activate the oxidative burst, an early innate immune response in the model plant Arabidopsis thaliana, explaining at least in part the ability of this R. radiobacter strain to avoid host defenses during a plant infection process.

Biopolymer Skeleton Produced by Rhizobium radiobacter: Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O-Antigen / Speciale, Immacolata; Di Lorenzo, Flaviana; Gargiulo, Valentina; Erbs, Gitte; Newman, Mari-Anne; Molinaro, Antonio; De Castro, Cristina. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - (2020). [10.1002/anie.201914053]

Biopolymer Skeleton Produced by Rhizobium radiobacter: Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O-Antigen

Speciale, Immacolata
Investigation
;
Di Lorenzo, Flaviana
Investigation
;
Gargiulo, Valentina
Investigation
;
Molinaro, Antonio
Supervision
;
De Castro, Cristina
Supervision
2020

Abstract

The lipopolysaccharide (LPS) O-antigen structure of the plant pathogen Rhizobium radiobacter strain TT9 and its possible role in a plant-microbe interaction was investigated. The analyses disclosed the presence of two O-antigens, named Poly1 and Poly2. The repetitive unit of Poly2 constitutes a 4-α-l-rhamnose linked to a 3-α-d-fucose residue. Surprisingly, Poly1 turned out to be a novel type of biopolymer in which the repeating unit is formed by a monosaccharide and an amino-acid derivative, so that the polymer has alternating glycosidic and amidic bonds joining the two units: 4-amino-4-deoxy-3-O-methyl-d-fucose and (2'R,3'R,4'S)-N-methyl-3',4'-dihydroxy-3'-methyl-5'-oxoproline). Differently from the O-antigens of LPSs from other pathogenic Gram-negative bacteria, these two O-antigens do not activate the oxidative burst, an early innate immune response in the model plant Arabidopsis thaliana, explaining at least in part the ability of this R. radiobacter strain to avoid host defenses during a plant infection process.
2020
Biopolymer Skeleton Produced by Rhizobium radiobacter: Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O-Antigen / Speciale, Immacolata; Di Lorenzo, Flaviana; Gargiulo, Valentina; Erbs, Gitte; Newman, Mari-Anne; Molinaro, Antonio; De Castro, Cristina. - In: ANGEWANDTE CHEMIE. INTERNATIONAL EDITION. - ISSN 1433-7851. - (2020). [10.1002/anie.201914053]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/795347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact