Titanium dioxide (TiO2) particles have been widely used in various industrial applications and consumer products. Due to their large production and use, they will eventually enter into aquatic environments. Once in the aquatic environment TiO2 particles may interact with the organisms and induce toxic effects. Since the most common crystallographic forms of TiO2 are rutile and anatase, the present study evaluated the effect of these two forms of TiO2 particles in Mytilus galloprovincialis. For this, mussels were exposed to different concentrations of rutile and anatase particles (0, 5, 50, 100 µg/L) for twenty-eight days. Ti concentrations, histopathological alterations and biochemical effects were evaluated. Similar Ti concentrations were found in mussels exposed to rutile and anatase, with the highest values in mussels exposed to the highest exposure concentration. Histopathological results demonstrated that both forms of TiO2 induced alterations on gills and digestive glands along the increasing exposure gradient. Biochemical markers showed that mussels exposed to rutile maintained their metabolic capacity (assessed by the activity of the Electron Transport System, ETS), while anatase increased the metabolism of mussels. Mussels exposed to rutile increased their detoxifying defences which, due to the low tested concentrations, were sufficient to avoid cellular damage. On the other hand, mussels exposed to anatase suffered cellular damages despite the increase of the antioxidant defences which may be related to the high ETS activity. Both rutile and anatase particles were toxic to M. galloprovincialis, being the highest oxidative stress exerted by the crystalline form anatase.
Biochemical and histopathological impacts of rutile and anatase (TiO2 forms) in Mytilus galloprovincialis / Leite, C.; Coppola, F.; Monteiro, R.; Russo, T.; Polese, G.; Lourenco, M. A. O.; Silva, M. R. F.; Ferreira, P.; Soares, A. M. V. M.; Freitas, R.; Pereira, E.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 719:(2020), p. 134886. [10.1016/j.scitotenv.2019.134886]
Biochemical and histopathological impacts of rutile and anatase (TiO2 forms) in Mytilus galloprovincialis
Russo T.;Polese G.Membro del Collaboration Group
;
2020
Abstract
Titanium dioxide (TiO2) particles have been widely used in various industrial applications and consumer products. Due to their large production and use, they will eventually enter into aquatic environments. Once in the aquatic environment TiO2 particles may interact with the organisms and induce toxic effects. Since the most common crystallographic forms of TiO2 are rutile and anatase, the present study evaluated the effect of these two forms of TiO2 particles in Mytilus galloprovincialis. For this, mussels were exposed to different concentrations of rutile and anatase particles (0, 5, 50, 100 µg/L) for twenty-eight days. Ti concentrations, histopathological alterations and biochemical effects were evaluated. Similar Ti concentrations were found in mussels exposed to rutile and anatase, with the highest values in mussels exposed to the highest exposure concentration. Histopathological results demonstrated that both forms of TiO2 induced alterations on gills and digestive glands along the increasing exposure gradient. Biochemical markers showed that mussels exposed to rutile maintained their metabolic capacity (assessed by the activity of the Electron Transport System, ETS), while anatase increased the metabolism of mussels. Mussels exposed to rutile increased their detoxifying defences which, due to the low tested concentrations, were sufficient to avoid cellular damage. On the other hand, mussels exposed to anatase suffered cellular damages despite the increase of the antioxidant defences which may be related to the high ETS activity. Both rutile and anatase particles were toxic to M. galloprovincialis, being the highest oxidative stress exerted by the crystalline form anatase.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0048969719348788-main.pdf
non disponibili
Descrizione: articolo principale
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
2.64 MB
Formato
Adobe PDF
|
2.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.