Background: The comprehension of the mechanism of action of antimicrobial peptides is fundamental for the design of new antibiotics. Studies performed looking at the interaction of peptides with bacterial cells offer a faithful picture of what really happens in nature. Methods: In this work we focused on the interaction of the peptide Temporin L with E. coli cells, using a variety of biochemical and biophysical techniques that include: functional proteomics, docking, optical microscopy, TEM, DLS, SANS, fluorescence. Results: We identified bacterial proteins specifically interacting with the peptides that belong to the divisome machinery; our data suggest that the GTPase FtsZ is the specific peptide target. Docking experiments supported the FtsZ-TL interaction; binding and enzymatic assays using recombinant FtsZ confirmed this hypothesis and revealed a competitive inhibition mechanism. Optical microscopy and TEM measurements demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide forming long necklace-like cell filaments. Dynamic light scattering studies and Small Angle Neutron Scattering experiments performed on treated and untreated bacterial cells, indicated a change at the nanoscale level of the bacterial membrane. Conclusions: The peptide temporin L acts by a non-membrane-lytic mechanism of action, inhibiting the divisome machinery. General significance: Identification of targets of antimicrobial peptides is pivotal to the tailored design of new antimicrobials.
The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex / Di Somma, A.; Avitabile, C.; Cirillo, A.; Moretta, A.; Merlino, A.; Paduano, L.; Duilio, A.; Romanelli, A.. - In: BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS. - ISSN 0304-4165. - 1864:7(2020), p. 129606. [10.1016/j.bbagen.2020.129606]
The antimicrobial peptide Temporin L impairs E. coli cell division by interacting with FtsZ and the divisome complex
Di Somma A.;Cirillo A.;Merlino A.;Paduano L.;Duilio A.;
2020
Abstract
Background: The comprehension of the mechanism of action of antimicrobial peptides is fundamental for the design of new antibiotics. Studies performed looking at the interaction of peptides with bacterial cells offer a faithful picture of what really happens in nature. Methods: In this work we focused on the interaction of the peptide Temporin L with E. coli cells, using a variety of biochemical and biophysical techniques that include: functional proteomics, docking, optical microscopy, TEM, DLS, SANS, fluorescence. Results: We identified bacterial proteins specifically interacting with the peptides that belong to the divisome machinery; our data suggest that the GTPase FtsZ is the specific peptide target. Docking experiments supported the FtsZ-TL interaction; binding and enzymatic assays using recombinant FtsZ confirmed this hypothesis and revealed a competitive inhibition mechanism. Optical microscopy and TEM measurements demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide forming long necklace-like cell filaments. Dynamic light scattering studies and Small Angle Neutron Scattering experiments performed on treated and untreated bacterial cells, indicated a change at the nanoscale level of the bacterial membrane. Conclusions: The peptide temporin L acts by a non-membrane-lytic mechanism of action, inhibiting the divisome machinery. General significance: Identification of targets of antimicrobial peptides is pivotal to the tailored design of new antimicrobials.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.