Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift fromglycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey themetabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment / Avagliano, A.; Fiume, G.; Pelagalli, A.; Sanità, G.; Ruocco, M. R.; Montagnani, S.; Arcucci, A.. - In: FRONTIERS IN ONCOLOGY. - ISSN 2234-943X. - 10:article 722(2020), pp. 1-21. [10.3389/fonc.2020.00722]
Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment
Avagliano A.
;Pelagalli A.;Ruocco M. R.;Montagnani S.;Arcucci A.
2020
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift fromglycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey themetabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.File | Dimensione | Formato | |
---|---|---|---|
_2020 front oncol arcucci.pdf
accesso aperto
Descrizione: 2020. Frontiers in Oncology
Tipologia:
Altro materiale allegato
Licenza:
Dominio pubblico
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.