The aim of this work is the development of a simulation model for the anaerobic digestion process of source-sorted organic fractions of municipal solid wastes. In particular, a detailed model simulating both biological and thermal behaviors of the process was developed. The biological model is based on the Anaerobic Digestion Model 1 (ADM1), which allows one to evaluate the dynamic trends of the concentrations of the main components and the biogas production as a function of the digester operating temperature. The work also includes a detailed thermal model which is developed considering the geometrical and structural features of the digester. The thermal behavior of the digester was also modeled, considering a purposely designed heat exchanger immersed inside the digester. Therefore, the thermal behavior of the process was evaluated by the well-known heat exchange equations and thermal energy balances. The combination of these two models is used to analyze the different possible operating conditions of the system. The model is also able to consider that the reactor operating temperature and the biogas production dynamically depend on a plurality of parameters: inlet hot water temperature and flowrate of the heating system, outdoor temperature, flowrate of organic fraction. The numerical resolution of the obtained differential equations and thermal balances of the model was carried out in the MATLAB®environment. The result shows that the calculated biogas production is 0.132 Nm3 per kg of OFMSW. In addition, the model also shows that the inlet hot water temperature must be increased by about 1.5 °C, to increase by 1.0 °C the digester temperature.
Modeling of the anaerobic digestion of organic wastes: Integration of heat transfer and biochemical aspects / Calise, F.; Cappiello, F. L.; D'Accadia, M. D.; Infante, A.; Vicidomini, M.. - In: ENERGIES. - ISSN 1996-1073. - 13:11(2020), p. 2702. [10.3390/en13112702]
Modeling of the anaerobic digestion of organic wastes: Integration of heat transfer and biochemical aspects
Calise F.;Cappiello F. L.;Infante A.;Vicidomini M.
2020
Abstract
The aim of this work is the development of a simulation model for the anaerobic digestion process of source-sorted organic fractions of municipal solid wastes. In particular, a detailed model simulating both biological and thermal behaviors of the process was developed. The biological model is based on the Anaerobic Digestion Model 1 (ADM1), which allows one to evaluate the dynamic trends of the concentrations of the main components and the biogas production as a function of the digester operating temperature. The work also includes a detailed thermal model which is developed considering the geometrical and structural features of the digester. The thermal behavior of the digester was also modeled, considering a purposely designed heat exchanger immersed inside the digester. Therefore, the thermal behavior of the process was evaluated by the well-known heat exchange equations and thermal energy balances. The combination of these two models is used to analyze the different possible operating conditions of the system. The model is also able to consider that the reactor operating temperature and the biogas production dynamically depend on a plurality of parameters: inlet hot water temperature and flowrate of the heating system, outdoor temperature, flowrate of organic fraction. The numerical resolution of the obtained differential equations and thermal balances of the model was carried out in the MATLAB®environment. The result shows that the calculated biogas production is 0.132 Nm3 per kg of OFMSW. In addition, the model also shows that the inlet hot water temperature must be increased by about 1.5 °C, to increase by 1.0 °C the digester temperature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.