The ocean acidification may severely affect macroalgal communities of the shallowest coastal habitats where they play relevant structural and functional roles. In this paper were investigated the physiological traits of two populations of Dictyota dichotoma var. intricata, living at two different pH for several generations to assess the reasons of the algae reduced abundance at current (8.1) compared to low pH (6.7). Besides, through transplant experiments, the two populations were analysed for the stress response and reversibility of physiological performance at different pH. The long-term acclimation to high pCO(2)/low pH favours an ecotype characterised by low energetic costs, higher photochemical efficiency and more resistance to the oxidative stress, compared to individuals living at current pH. These traits promoted the growth and reproduction of the community living at pH 6.7, favouring a lower macroalgal diversity, but a higher ecological success under ocean acidification. The similar behaviour observed between Dictyota living at pH 6.7 and transplanted thalli from pH 6.7 to 8.1, suggested a high tolerance to pH changes in the short-term. On the contrary, adaptive responses may have favoured molecular adjustments on the long-term, as showed by the significant differences between the wild populations at pH 8.1 and 6.7. The overall data indicate that both plasticity and adaptive mechanisms may be the reasons for the success of the brown seaweeds under future high pCO(2)/lowpH. The plasticity due to photochemistry adjustments is likely involved in the early response to environmental changes. Conversely, modifications in the photosynthetic biochemical machinery suggest that more complex adaptive mechanisms occurred in the current population of Dictyota living at pH 6.7. Further studies on population genetics will reveal if any differentiation is taking place at the population level or a local adaptation has already occurred in Dictyota and other brown algae under chronic low pH.
Long-term response of Dictyota dichotoma var. intricata (C. Agardh) Greville (Phaeophyceae) to ocean acidification: Insights from high pCO2 vents / Porzio, L.; Arena, C.; Lorenti, M.; De Maio, A.; Buia, M. C.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - 731:(2020), pp. 1-10. [10.1016/j.scitotenv.2020.138896]
Long-term response of Dictyota dichotoma var. intricata (C. Agardh) Greville (Phaeophyceae) to ocean acidification: Insights from high pCO2 vents
Porzio L.
Primo
;Arena C.
Secondo
;De Maio A.;
2020
Abstract
The ocean acidification may severely affect macroalgal communities of the shallowest coastal habitats where they play relevant structural and functional roles. In this paper were investigated the physiological traits of two populations of Dictyota dichotoma var. intricata, living at two different pH for several generations to assess the reasons of the algae reduced abundance at current (8.1) compared to low pH (6.7). Besides, through transplant experiments, the two populations were analysed for the stress response and reversibility of physiological performance at different pH. The long-term acclimation to high pCO(2)/low pH favours an ecotype characterised by low energetic costs, higher photochemical efficiency and more resistance to the oxidative stress, compared to individuals living at current pH. These traits promoted the growth and reproduction of the community living at pH 6.7, favouring a lower macroalgal diversity, but a higher ecological success under ocean acidification. The similar behaviour observed between Dictyota living at pH 6.7 and transplanted thalli from pH 6.7 to 8.1, suggested a high tolerance to pH changes in the short-term. On the contrary, adaptive responses may have favoured molecular adjustments on the long-term, as showed by the significant differences between the wild populations at pH 8.1 and 6.7. The overall data indicate that both plasticity and adaptive mechanisms may be the reasons for the success of the brown seaweeds under future high pCO(2)/lowpH. The plasticity due to photochemistry adjustments is likely involved in the early response to environmental changes. Conversely, modifications in the photosynthetic biochemical machinery suggest that more complex adaptive mechanisms occurred in the current population of Dictyota living at pH 6.7. Further studies on population genetics will reveal if any differentiation is taking place at the population level or a local adaptation has already occurred in Dictyota and other brown algae under chronic low pH.File | Dimensione | Formato | |
---|---|---|---|
2020_Porzio et al STOTEN.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
970.15 kB
Formato
Adobe PDF
|
970.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.