We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic resonance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and nonlinear manifold learning algorithms, namely, Multidimensional Scaling, Isometric Feature Mapping, Diffusion Maps, Locally Linear Embedding and kernel PCA. Furthermore, based on key global graph-theoretic properties of the embedded FCN, we compare their classification potential using machine learning. We also assess the performance of two metrics that are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the cross correlation metric. We show that diffusion maps with the cross correlation metric outperform the other combinations.

Construction of embedded fMRI resting-state functional connectivity networks using manifold learning / Gallos, I. K.; Galaris, E.; Siettos, Konstantinos. - In: COGNITIVE NEURODYNAMICS. - ISSN 1871-4080. - 15:4(2021), pp. 585-608. [10.1007/s11571-020-09645-y]

Construction of embedded fMRI resting-state functional connectivity networks using manifold learning

Galaris E.;Siettos Konstantinos
2021

Abstract

We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic resonance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and nonlinear manifold learning algorithms, namely, Multidimensional Scaling, Isometric Feature Mapping, Diffusion Maps, Locally Linear Embedding and kernel PCA. Furthermore, based on key global graph-theoretic properties of the embedded FCN, we compare their classification potential using machine learning. We also assess the performance of two metrics that are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the cross correlation metric. We show that diffusion maps with the cross correlation metric outperform the other combinations.
2021
Construction of embedded fMRI resting-state functional connectivity networks using manifold learning / Gallos, I. K.; Galaris, E.; Siettos, Konstantinos. - In: COGNITIVE NEURODYNAMICS. - ISSN 1871-4080. - 15:4(2021), pp. 585-608. [10.1007/s11571-020-09645-y]
File in questo prodotto:
File Dimensione Formato  
Gallos2020_Article_ConstructionOfEmbeddedFMRIRest.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 3.43 MB
Formato Adobe PDF
3.43 MB Adobe PDF Visualizza/Apri
Article_ConstructionOfEmbeddedFMRIRest.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.44 MB
Formato Adobe PDF
3.44 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/827707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact