A fluidized bed reactor, filled with laccase-based beads, has been employed to bioremediate aqueous solutions polluted by endocrine disruptors belonging to the alkylphenols (APs) class. In particular Octylphenol and Nonylphenol have been studied. The catalytic activity of free and immobilized laccase from Trametes versicolor has been characterized as a function of pH, temperature and substrate concentration in the reaction medium. In view of practical applications for each substrate concentration the removal efficiency (RE), the time to halve the initial concentration (τ50), and the tc=0, i.e. the time to reach complete pollutant removal, have been calculated. The immobilized laccase exhibited a lower affinity for octylphenol (Km=1.11mM) than for Nonylphenol (Km=0.72mM), but all the other parameters of applicative interest resulted more significant for octylphenol. For example, the times to reach the complete removal of octylphenol compared to those for nonylphenol at the same concentration is shorter of about 15% (at low concentrations) up to 40% (at high concentrations). The study of cell proliferation with MPP89 cells, a human mesothelioma cell line, and the assay with the YES test indicated the loss of estrogenic activity of the APs solutions after laccase treatment. © 2013.
Enzymatic removal of estrogenic activity of nonylphenol and octylphenol aqueous solutions by immobilized laccase from Trametes versicolor / Catapane, M.; Nicolucci, C.; Menale, C.; Mita, L.; Rossi, S.; Mita, D. G.; Diano, N.. - In: JOURNAL OF HAZARDOUS MATERIALS. - ISSN 0304-3894. - 248-249:1(2013), pp. 337-346. [10.1016/j.jhazmat.2013.01.031]
Enzymatic removal of estrogenic activity of nonylphenol and octylphenol aqueous solutions by immobilized laccase from Trametes versicolor
Menale C.;
2013
Abstract
A fluidized bed reactor, filled with laccase-based beads, has been employed to bioremediate aqueous solutions polluted by endocrine disruptors belonging to the alkylphenols (APs) class. In particular Octylphenol and Nonylphenol have been studied. The catalytic activity of free and immobilized laccase from Trametes versicolor has been characterized as a function of pH, temperature and substrate concentration in the reaction medium. In view of practical applications for each substrate concentration the removal efficiency (RE), the time to halve the initial concentration (τ50), and the tc=0, i.e. the time to reach complete pollutant removal, have been calculated. The immobilized laccase exhibited a lower affinity for octylphenol (Km=1.11mM) than for Nonylphenol (Km=0.72mM), but all the other parameters of applicative interest resulted more significant for octylphenol. For example, the times to reach the complete removal of octylphenol compared to those for nonylphenol at the same concentration is shorter of about 15% (at low concentrations) up to 40% (at high concentrations). The study of cell proliferation with MPP89 cells, a human mesothelioma cell line, and the assay with the YES test indicated the loss of estrogenic activity of the APs solutions after laccase treatment. © 2013.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.