Geotagged smartphone photos can be employed to build digital terrain models using structure from motion-multiview stereo (SfM-MVS) photogrammetry. Accelerometer, magnetometer, and gyroscope sensors integrated within consumer-grade smartphones can be used to record the orientation of images, which can be combined with location information provided by inbuilt global navigation satellite system (GNSS) sensors to geo-register the SfM-MVS model. The accuracy of these sensors is, however, highly variable. In this work, we use a 200 m-wide natural rocky cliff as a test case to evaluate the impact of consumer-grade smartphone GNSS sensor accuracy on the registration of SfM-MVS models. We built a high-resolution 3D model of the cliff, using an unmanned aerial vehicle (UAV) for image acquisition and ground control points (GCPs) located using a differential GNSS survey for georeferencing. This 3D model provides the benchmark against which terrestrial SfM-MVS photogrammetry models, built using smartphone images and registered using built-in accelerometer/gyroscope and GNSS sensors, are compared. Results show that satisfactory post-processing registrations of the smartphone models can be attained, requiring: (1) wide acquisition areas (scaling with GNSS error) and (2) the progressive removal of misaligned images, via an iterative process of model building and error estimation.
Photogrammetric 3d model via smartphone gnss sensor: Workflow, error estimate, and best practices / Tavani, S.; Pignalosa, A.; Corradetti, A.; Mercuri, M.; Smeraglia, L.; Riccardi, U.; Seers, T.; Pavlis, T.; Billi, A.. - In: REMOTE SENSING. - ISSN 2072-4292. - 12:21(2020), pp. 1-19. [10.3390/rs12213616]
Photogrammetric 3d model via smartphone gnss sensor: Workflow, error estimate, and best practices
Tavani S.;Pignalosa A.;Corradetti A.;Riccardi U.
;
2020
Abstract
Geotagged smartphone photos can be employed to build digital terrain models using structure from motion-multiview stereo (SfM-MVS) photogrammetry. Accelerometer, magnetometer, and gyroscope sensors integrated within consumer-grade smartphones can be used to record the orientation of images, which can be combined with location information provided by inbuilt global navigation satellite system (GNSS) sensors to geo-register the SfM-MVS model. The accuracy of these sensors is, however, highly variable. In this work, we use a 200 m-wide natural rocky cliff as a test case to evaluate the impact of consumer-grade smartphone GNSS sensor accuracy on the registration of SfM-MVS models. We built a high-resolution 3D model of the cliff, using an unmanned aerial vehicle (UAV) for image acquisition and ground control points (GCPs) located using a differential GNSS survey for georeferencing. This 3D model provides the benchmark against which terrestrial SfM-MVS photogrammetry models, built using smartphone images and registered using built-in accelerometer/gyroscope and GNSS sensors, are compared. Results show that satisfactory post-processing registrations of the smartphone models can be attained, requiring: (1) wide acquisition areas (scaling with GNSS error) and (2) the progressive removal of misaligned images, via an iterative process of model building and error estimation.File | Dimensione | Formato | |
---|---|---|---|
TavaniEtAl2020_RemoteSensing.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.