Future radio surveys will generate catalogs of tens of millions of radio sources, for which redshift estimates will be essential to achieve many of the science goals. However, spectroscopic data will be available for only a small fraction of these sources, and in most cases even the optical and infrared photometry will be of limited quality. Furthermore, radio sources tend to be at higher redshift than most optical sources (most radio surveys have a median redshift greater than 1) and so a significant fraction of radio sources hosts differ from those for which most photometric redshift templates are designed. We therefore need to develop new techniques for estimating the redshifts of radio sources. As a starting point in this process, we evaluate a number of machine-learning techniques for estimating redshift, together with a conventional template-fitting technique. We pay special attention to how the performance is affected by the incompleteness of the training sample and by sparseness of the parameter space or by limited availability of ancillary multiwavelength data. As expected, we find that the quality of the photometric-redshift degrades as the quality of the photometry decreases, but that even with the limited quality of photometry available for all-sky-surveys, useful redshift information is available for the majority of sources, particularly at low redshift. We find that a template-fitting technique performs best in the presence of high-quality and almost complete multi-band photometry, especially if radio sources that are also X-ray emitting are treated separately, using specific templates and priors. When we reduced the quality of photometry to match that available for the EMU all-sky radio survey, the quality of the template-fitting degraded and became comparable to some of the machine-learning methods. Machine learning techniques currently perform better at low redshift than at high redshift, because of incompleteness of the currently available training data at high redshifts.

A comparison of photometric redshift techniques for large radio surveys / Norris, R. P.; Salvato, M.; Longo, G.; Brescia, M.; Budavari, T.; Carliles, S.; Cavuoti, S.; Farrah, D.; Geach, J.; Luken, K.; Musaeva, A.; Polsterer, K.; Riccio, G.; Seymour, N.; Smolcic, V.; Vaccari, M.; Zinn, P.. - In: PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC. - ISSN 0004-6280. - 131:1004(2019), p. 108004. [10.1088/1538-3873/ab0f7b]

A comparison of photometric redshift techniques for large radio surveys

Longo G.;Brescia M.;
2019

Abstract

Future radio surveys will generate catalogs of tens of millions of radio sources, for which redshift estimates will be essential to achieve many of the science goals. However, spectroscopic data will be available for only a small fraction of these sources, and in most cases even the optical and infrared photometry will be of limited quality. Furthermore, radio sources tend to be at higher redshift than most optical sources (most radio surveys have a median redshift greater than 1) and so a significant fraction of radio sources hosts differ from those for which most photometric redshift templates are designed. We therefore need to develop new techniques for estimating the redshifts of radio sources. As a starting point in this process, we evaluate a number of machine-learning techniques for estimating redshift, together with a conventional template-fitting technique. We pay special attention to how the performance is affected by the incompleteness of the training sample and by sparseness of the parameter space or by limited availability of ancillary multiwavelength data. As expected, we find that the quality of the photometric-redshift degrades as the quality of the photometry decreases, but that even with the limited quality of photometry available for all-sky-surveys, useful redshift information is available for the majority of sources, particularly at low redshift. We find that a template-fitting technique performs best in the presence of high-quality and almost complete multi-band photometry, especially if radio sources that are also X-ray emitting are treated separately, using specific templates and priors. When we reduced the quality of photometry to match that available for the EMU all-sky radio survey, the quality of the template-fitting degraded and became comparable to some of the machine-learning methods. Machine learning techniques currently perform better at low redshift than at high redshift, because of incompleteness of the currently available training data at high redshifts.
2019
A comparison of photometric redshift techniques for large radio surveys / Norris, R. P.; Salvato, M.; Longo, G.; Brescia, M.; Budavari, T.; Carliles, S.; Cavuoti, S.; Farrah, D.; Geach, J.; Luken, K.; Musaeva, A.; Polsterer, K.; Riccio, G.; Seymour, N.; Smolcic, V.; Vaccari, M.; Zinn, P.. - In: PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC. - ISSN 0004-6280. - 131:1004(2019), p. 108004. [10.1088/1538-3873/ab0f7b]
File in questo prodotto:
File Dimensione Formato  
137-Norris_2019_PASP_131_108004.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/837641
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact