Since the early years, when they started to enter the market, Learning Management Systems (LMSs) demonstrated their utility inside learning environments, contributing to the diffusion of e-learning especially in those Institutions with a low budget or no internal knowledge for developing e-learning initiatives. Today, they have reached a high maturity level, providing professional solutions to almost any educational need referring to distance learning. However, in our opinion, there are two important evolutions that should profoundly change the architecture of these pillar software tools. First, the acquisition of an enormous amount of data related to educational tasks will be very interesting for all the actors involved in educational processes (teachers, students, researchers, administrative personnel), and this will be particularly evident when standards like Experience-API (xAPI) will help to provide a more pervasive experience for learners. Second, we are observing the rise of new era for software platforms, characterized by machine learning, deep learning, cognitive computing and many other technologies that substantially give the computer a much more active role in the respective processes. We believe that this new paradigm will apply to education too. What this will entail is mainly related to exponential learning, a process of exponential growth of training demand because new knowledge and skills must be delivered at a speed never seen before, and where big data contexts are fundamental. In this paper, we present an analysis of how LMSs should evolve in the future, in our opinion and according to our experience, in terms of functionalities and services provided to users. We believe that current LMSs and their software architectures, mainly based on traditional multi-tier, relational database-oriented architectures will not be enough to stand the impact of these two new paradigms for modern learning environments. We are in the process of re-designing a virtual community platform that we have created and developed along the years, used in our universities and in several public and private organizations. The platform is oriented towards the support of collaborative processes, where of course e-learning is one of the most important, but not the only one, and where we are adding new services supporting collaboration in different ways. In this paper we will present the software architectural changes and evolution according to the advent of big data and cognitive computing.

Big Data, Cognitive Computing and the future of learning managements Systems / Coccoli, Mauro; Maresca, Paolo; Molinari, Andrea. - Lecture Notes in Educational Technologies:(2020), pp. 329-340. [10.1007/978-981-15-3142-2]

Big Data, Cognitive Computing and the future of learning managements Systems

Paolo Maresca
Secondo
Membro del Collaboration Group
;
2020

Abstract

Since the early years, when they started to enter the market, Learning Management Systems (LMSs) demonstrated their utility inside learning environments, contributing to the diffusion of e-learning especially in those Institutions with a low budget or no internal knowledge for developing e-learning initiatives. Today, they have reached a high maturity level, providing professional solutions to almost any educational need referring to distance learning. However, in our opinion, there are two important evolutions that should profoundly change the architecture of these pillar software tools. First, the acquisition of an enormous amount of data related to educational tasks will be very interesting for all the actors involved in educational processes (teachers, students, researchers, administrative personnel), and this will be particularly evident when standards like Experience-API (xAPI) will help to provide a more pervasive experience for learners. Second, we are observing the rise of new era for software platforms, characterized by machine learning, deep learning, cognitive computing and many other technologies that substantially give the computer a much more active role in the respective processes. We believe that this new paradigm will apply to education too. What this will entail is mainly related to exponential learning, a process of exponential growth of training demand because new knowledge and skills must be delivered at a speed never seen before, and where big data contexts are fundamental. In this paper, we present an analysis of how LMSs should evolve in the future, in our opinion and according to our experience, in terms of functionalities and services provided to users. We believe that current LMSs and their software architectures, mainly based on traditional multi-tier, relational database-oriented architectures will not be enough to stand the impact of these two new paradigms for modern learning environments. We are in the process of re-designing a virtual community platform that we have created and developed along the years, used in our universities and in several public and private organizations. The platform is oriented towards the support of collaborative processes, where of course e-learning is one of the most important, but not the only one, and where we are adding new services supporting collaboration in different ways. In this paper we will present the software architectural changes and evolution according to the advent of big data and cognitive computing.
2020
978-981-15-3141-5
978-981-15-3142-2
Big Data, Cognitive Computing and the future of learning managements Systems / Coccoli, Mauro; Maresca, Paolo; Molinari, Andrea. - Lecture Notes in Educational Technologies:(2020), pp. 329-340. [10.1007/978-981-15-3142-2]
File in questo prodotto:
File Dimensione Formato  
LNET.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 536 kB
Formato Adobe PDF
536 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/838704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact