The combustion process occurring in an alternative Spark Ignition (SI) engine powered with bio-syngas from biomass gasification was previously studied by authors through the development of two different numerical models: A 0-1D model developed in the GT-Suite® environment, aimed at gaining a first look upon the main features of the heat release by the syngas and engine performances; a 3D Computational Fluid Dynamics (CFD) model developed within the AVL FireTM software reproducing the engine combustion cycle within a Reynolds Averaged Navier Stokes (RANS) schematization and employing a detailed chemical reaction mechanism to highlight the interaction between the fluid dynamics and the kinetics of the specific biofuel oxidation chain. The numerical results were validated with respect to experimental measurements in a baseline condition, where the presence of a relatively high amount of CO in the exhaust gases was noticed as related to an engine low combustion efficiency, mainly due to the peripheral spark plug position that determines the persistence of residual gases on the opposite side of the combustion chamber wall. The proposed work presents a numerical analysis made through the developed models on the effects of proper changes in the spark plug position. A multi-objective optimization problem is conducted also by varying the Start of Spark (SOS) and the mixture air-to-fuel ratio with the aim of reducing the engine environmental impact without affecting its performances. A centrally mounted spark, along with a correct calibration of the SOS and mixture ratio, allows a reduction of more than 90% of CO emission with respect to the baseline condition without penalizing the engine brake power and efficiency.

Optimization of the efficiency in a syngas powered si engine through numerical studies related to the geometry of the combustion chamber / Caputo, C.; Cirillo, D.; Costa, M.; La Villetta, M.; Martoriello, G.; Piazzullo, D.; Tuccillo, R.. - In: CHEMICAL ENGINEERING TRANSACTIONS. - ISSN 2283-9216. - 80:(2020), pp. 19-24. [10.3303/CET2080004]

Optimization of the efficiency in a syngas powered si engine through numerical studies related to the geometry of the combustion chamber

Caputo C.;Martoriello G.;Piazzullo D.;Tuccillo R.
2020

Abstract

The combustion process occurring in an alternative Spark Ignition (SI) engine powered with bio-syngas from biomass gasification was previously studied by authors through the development of two different numerical models: A 0-1D model developed in the GT-Suite® environment, aimed at gaining a first look upon the main features of the heat release by the syngas and engine performances; a 3D Computational Fluid Dynamics (CFD) model developed within the AVL FireTM software reproducing the engine combustion cycle within a Reynolds Averaged Navier Stokes (RANS) schematization and employing a detailed chemical reaction mechanism to highlight the interaction between the fluid dynamics and the kinetics of the specific biofuel oxidation chain. The numerical results were validated with respect to experimental measurements in a baseline condition, where the presence of a relatively high amount of CO in the exhaust gases was noticed as related to an engine low combustion efficiency, mainly due to the peripheral spark plug position that determines the persistence of residual gases on the opposite side of the combustion chamber wall. The proposed work presents a numerical analysis made through the developed models on the effects of proper changes in the spark plug position. A multi-objective optimization problem is conducted also by varying the Start of Spark (SOS) and the mixture air-to-fuel ratio with the aim of reducing the engine environmental impact without affecting its performances. A centrally mounted spark, along with a correct calibration of the SOS and mixture ratio, allows a reduction of more than 90% of CO emission with respect to the baseline condition without penalizing the engine brake power and efficiency.
2020
Optimization of the efficiency in a syngas powered si engine through numerical studies related to the geometry of the combustion chamber / Caputo, C.; Cirillo, D.; Costa, M.; La Villetta, M.; Martoriello, G.; Piazzullo, D.; Tuccillo, R.. - In: CHEMICAL ENGINEERING TRANSACTIONS. - ISSN 2283-9216. - 80:(2020), pp. 19-24. [10.3303/CET2080004]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/838991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact