The complex microbial community of the gut microbiome plays a fundamental role in driving development and function of the human immune system. This phenomenon is named the gut microbiome-immune system axis. When operating optimally, this axis influences both innate and adaptive immunity, which orchestrates the maintenance of crucial elements of host-microorganisms symbiosis, in a dialogue that modulates responses in the most beneficial way. Growing evidence reveals some environmental factors which can positively and negatively modulate the gut microbiome-immune system axis with consequences on the body health status. Several conditions which increasingly affect the pediatric age, such as allergies, autoimmune and inflammatory disorders, arise from a failure of the gut microbiome-immune system axis. Prenatal or postnatal modulation of this axis through some interventional strategies (including diet, probiotics and postbiotics), may lead to a positive gene-environment interaction with improvement of immune-modulatory effects and final positive effect on human health. In particular probiotics and postbiotics exerting pleiotropic regulatory actions on the gut-microbiome-immune system axis provide an innovative preventive and therapeutic strategy for many pediatric conditions.
The role of probiotics and postbiotics in modulating the gut microbiome-immune system axis in the pediatric age / Carucci, Laura; Coppola, Serena; Luzzetti, Anna; Giglio, Veronica; Vanderhoof, Jon; Berni Canani, Roberto. - In: MINERVA PEDIATRICS. - ISSN 2724-5276. - 73:2(2021), pp. 115-127. [10.23736/S2724-5276.21.06188-0]
The role of probiotics and postbiotics in modulating the gut microbiome-immune system axis in the pediatric age
Carucci, Laura;Coppola, Serena;Luzzetti, Anna;Giglio, Veronica;Berni Canani, Roberto
2021
Abstract
The complex microbial community of the gut microbiome plays a fundamental role in driving development and function of the human immune system. This phenomenon is named the gut microbiome-immune system axis. When operating optimally, this axis influences both innate and adaptive immunity, which orchestrates the maintenance of crucial elements of host-microorganisms symbiosis, in a dialogue that modulates responses in the most beneficial way. Growing evidence reveals some environmental factors which can positively and negatively modulate the gut microbiome-immune system axis with consequences on the body health status. Several conditions which increasingly affect the pediatric age, such as allergies, autoimmune and inflammatory disorders, arise from a failure of the gut microbiome-immune system axis. Prenatal or postnatal modulation of this axis through some interventional strategies (including diet, probiotics and postbiotics), may lead to a positive gene-environment interaction with improvement of immune-modulatory effects and final positive effect on human health. In particular probiotics and postbiotics exerting pleiotropic regulatory actions on the gut-microbiome-immune system axis provide an innovative preventive and therapeutic strategy for many pediatric conditions.File | Dimensione | Formato | |
---|---|---|---|
R15Y2021N02A0115.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.