Here we report the results obtained for a strain isolated from a polluted site and classified as Azospira sp. OGA 24. The capability of OGA 24 to utilize perchlorate and nitrate and the regulation of pathways were investigated by growth kinetic studies and analysis of messenger RNA (mRNA) expression of the genes of perchlorate reductase alpha subunit (pcrA), chlorite dismutase (cld), and periplasmic nitrate reductase large subunit (napA). In aerobic conditions and in a minimal medium containing 10 mM acetate as carbon source, 5.6 ± 0.34 mmol L-1 perchlorate or 9.7 ± 0.22 mmol L-1 nitrate were efficiently reduced during the growth with 10 mM of either perchlorate or nitrate. In anaerobiosis, napA was completely inhibited in the presence of perchlorate as the only electron acceptor, pcrA was barely detectable in nitrate-reducing conditions. The cell growth kinetics were in accordance with expression data, indicating a separation of nitrate and perchlorate respiration pathways. In the presence of both compounds, anaerobic nitrate consumption was reduced to 50% (4.9 ± 0.4 vs. 9.8 ± 0.15 mmol L-1 without perchlorate), while that of perchlorate was not affected (7.2 ± 0.5 vs. 6.9 ± 0.6 mmol L-1 without nitrate). Expression analysis confirmed the negative effect of perchlorate on nitrate respiration. Based on sequence analysis of the considered genes and 16S ribosomal gene (rDNA), the taxonomic position of Azospira sp. OGA 24 in the perchlorate respiring bacteria (PRB) group was further defined by classifying it in the oryzae species. The respiratory characteristics of OGA 24 strain make it very attractive in terms of potential applications in the bioremediation of environments exposed to perchlorate salts.
Preferential use of the perchlorate over the nitrate in the respiratory processes mediated by the Bacterium Azospira sp. OGA 24 / Guarino, F.; Motta, O.; Turano, M.; Proto, A.; Vigliotta, G.. - In: WATER. - ISSN 2073-4441. - 12:8(2020), pp. 1-18. [10.3390/w12082220]
Preferential use of the perchlorate over the nitrate in the respiratory processes mediated by the Bacterium Azospira sp. OGA 24
Turano M.;
2020
Abstract
Here we report the results obtained for a strain isolated from a polluted site and classified as Azospira sp. OGA 24. The capability of OGA 24 to utilize perchlorate and nitrate and the regulation of pathways were investigated by growth kinetic studies and analysis of messenger RNA (mRNA) expression of the genes of perchlorate reductase alpha subunit (pcrA), chlorite dismutase (cld), and periplasmic nitrate reductase large subunit (napA). In aerobic conditions and in a minimal medium containing 10 mM acetate as carbon source, 5.6 ± 0.34 mmol L-1 perchlorate or 9.7 ± 0.22 mmol L-1 nitrate were efficiently reduced during the growth with 10 mM of either perchlorate or nitrate. In anaerobiosis, napA was completely inhibited in the presence of perchlorate as the only electron acceptor, pcrA was barely detectable in nitrate-reducing conditions. The cell growth kinetics were in accordance with expression data, indicating a separation of nitrate and perchlorate respiration pathways. In the presence of both compounds, anaerobic nitrate consumption was reduced to 50% (4.9 ± 0.4 vs. 9.8 ± 0.15 mmol L-1 without perchlorate), while that of perchlorate was not affected (7.2 ± 0.5 vs. 6.9 ± 0.6 mmol L-1 without nitrate). Expression analysis confirmed the negative effect of perchlorate on nitrate respiration. Based on sequence analysis of the considered genes and 16S ribosomal gene (rDNA), the taxonomic position of Azospira sp. OGA 24 in the perchlorate respiring bacteria (PRB) group was further defined by classifying it in the oryzae species. The respiratory characteristics of OGA 24 strain make it very attractive in terms of potential applications in the bioremediation of environments exposed to perchlorate salts.File | Dimensione | Formato | |
---|---|---|---|
35 Preferential Use of the Perchlorate over the Nitrate in the Respiratory Processes Mediated by the Bacterium Azospira sp. OGA 24.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Dominio pubblico
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.