Protons having energies in the GeV range have been proposed as an alternative to Bragg-peak hadron therapy. This strategy reduces lateral scattering and overcomes uncertainties of particle range and relative biological effectiveness. GeV protons could additionally be used for targeting in image guided stereotactic radiosurgery. We experimentally demonstrated the potential of GeV protons for imaging of biological samples using E=0.8 GeV protons and the pRad setup at Los Alamos National Laboratory (LANL). In this setup, a system of magnetic lenses creates a point-to-point mapping from object to detector. This mapping compensates image blur due to lateral scattering inside the imaged (biological) object. We produced 2-dim proton radiographs of biological samples, an anthropomorphic phantom and performed simple dosimetry. High resolution tomographic reconstructions were derived from the 2-dim proton radiographs. Our experiment was performed within the framework of the PANTERA (Proton Therapy and Radiography) project. In the future, the proton microscope PRIOR (Proton Microscope for FAIR) located in the FAIR facility (Darmstadt), will focus on optimizing the technique for imaging of lesions implanted in animals and couple the irradiation with standard radiotherapy.
Towards proton therapy and radiography at FAIR / Prall, M.; Lang, P. M.; Latessa, C.; Mariam, F.; Merrill, F.; Shestov, L.; Simoniello, P.; Varentsov, D.; Durante, M.. - In: JOURNAL OF PHYSICS. CONFERENCE SERIES. - ISSN 1742-6588. - 599:1(2015), p. 012041. [10.1088/1742-6596/599/1/012041]
Towards proton therapy and radiography at FAIR
Simoniello P.;Durante M.
2015
Abstract
Protons having energies in the GeV range have been proposed as an alternative to Bragg-peak hadron therapy. This strategy reduces lateral scattering and overcomes uncertainties of particle range and relative biological effectiveness. GeV protons could additionally be used for targeting in image guided stereotactic radiosurgery. We experimentally demonstrated the potential of GeV protons for imaging of biological samples using E=0.8 GeV protons and the pRad setup at Los Alamos National Laboratory (LANL). In this setup, a system of magnetic lenses creates a point-to-point mapping from object to detector. This mapping compensates image blur due to lateral scattering inside the imaged (biological) object. We produced 2-dim proton radiographs of biological samples, an anthropomorphic phantom and performed simple dosimetry. High resolution tomographic reconstructions were derived from the 2-dim proton radiographs. Our experiment was performed within the framework of the PANTERA (Proton Therapy and Radiography) project. In the future, the proton microscope PRIOR (Proton Microscope for FAIR) located in the FAIR facility (Darmstadt), will focus on optimizing the technique for imaging of lesions implanted in animals and couple the irradiation with standard radiotherapy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.