Predictive models play an important role for increasing the reliability of composite structures over time, but a great deal of experimental data is requested. In this paper, results from creep experiments on uniaxial E-glass fiber reinforced polymer (FRP) single ply laminates, performed at different stress levels, are presented. The tests duration was of 42 months. Analytical modeling of the viscous behavior of the tested GFRP composite, under linear and nonlinear viscoelastic hypotheses, is reported. A discussion on the comparison of creep strain response by Burgers model, with parameters obtained from fitting of data for different test duration, is also proposed. Finally, predictive finite element method (FEM) simulations were carried out for discussing the deferred behavior induced by creep, for composite layers used for repair purposes in hydrogen transportation pipes. Numerical results highlighted a non-negligible difference in creep strain values, pointing out that a model based on experimental tests with shorter duration leads to a conservative composite design.

Experimental investigation and numerical modeling of creep response of glass fiber reinforced polymer composites / Berardi, V. P.; Perrella, M.; Armentani, E.; Cricri', G.. - In: FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. - ISSN 8756-758X. - 44:4(2021), pp. 1085-1095. [10.1111/ffe.13415]

Experimental investigation and numerical modeling of creep response of glass fiber reinforced polymer composites

Perrella M.
;
Armentani E.;CRICRI' G.
2021

Abstract

Predictive models play an important role for increasing the reliability of composite structures over time, but a great deal of experimental data is requested. In this paper, results from creep experiments on uniaxial E-glass fiber reinforced polymer (FRP) single ply laminates, performed at different stress levels, are presented. The tests duration was of 42 months. Analytical modeling of the viscous behavior of the tested GFRP composite, under linear and nonlinear viscoelastic hypotheses, is reported. A discussion on the comparison of creep strain response by Burgers model, with parameters obtained from fitting of data for different test duration, is also proposed. Finally, predictive finite element method (FEM) simulations were carried out for discussing the deferred behavior induced by creep, for composite layers used for repair purposes in hydrogen transportation pipes. Numerical results highlighted a non-negligible difference in creep strain values, pointing out that a model based on experimental tests with shorter duration leads to a conservative composite design.
2021
Experimental investigation and numerical modeling of creep response of glass fiber reinforced polymer composites / Berardi, V. P.; Perrella, M.; Armentani, E.; Cricri', G.. - In: FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES. - ISSN 8756-758X. - 44:4(2021), pp. 1085-1095. [10.1111/ffe.13415]
File in questo prodotto:
File Dimensione Formato  
Fatigue Fract Eng Mat Struct - 2021 - Experimental investigation and numerical modeling of creep response of creep response of glass fiber reinforced polymer composites.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 6.5 MB
Formato Adobe PDF
6.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/858279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact