In this paper we study the first Steklov-Laplacian eigenvalue with an internal fixed spherical obstacle. We prove that the spherical shell locally maximizes the first eigenvalue among nearly spherical sets when both the internal ball and the volume are fixed.
A STABILITY RESULT for the STEKLOV LAPLACIAN EIGENVALUE PROBLEM with A SPHERICAL OBSTACLE / Paoli, G.; Piscitelli, G.; Sannipoli, R.. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - 20:1(2021), pp. 145-158. [10.3934/cpaa.2020261]
A STABILITY RESULT for the STEKLOV LAPLACIAN EIGENVALUE PROBLEM with A SPHERICAL OBSTACLE
Paoli G.;Piscitelli G.;Sannipoli R.
2021
Abstract
In this paper we study the first Steklov-Laplacian eigenvalue with an internal fixed spherical obstacle. We prove that the spherical shell locally maximizes the first eigenvalue among nearly spherical sets when both the internal ball and the volume are fixed.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.