The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.

On the nonlinear Dirac equation on noncompact metric graphs / Borrelli, W.; Carlone, R.; Tentarelli, L.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 278:(2021), pp. 326-357. [10.1016/j.jde.2021.01.005]

On the nonlinear Dirac equation on noncompact metric graphs

Borrelli W.;Carlone R.;Tentarelli L.
2021

Abstract

The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.
2021
On the nonlinear Dirac equation on noncompact metric graphs / Borrelli, W.; Carlone, R.; Tentarelli, L.. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - 278:(2021), pp. 326-357. [10.1016/j.jde.2021.01.005]
File in questo prodotto:
File Dimensione Formato  
11.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 488.77 kB
Formato Adobe PDF
488.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/865719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact