This paper focuses on a family of observation-driven models for autoregressive discrete-valued data, called INAR models. The main purpose of the project is to write and document a set of Gretl Econometric Software functions that perform time series estimation of one-lagged univariate INAR models with Poisson and Negative Binomial marginals.

Integer autoregressive modeling: a new gretl routine / Palazzo, Lucio. - (2019), pp. 95-103. (Intervento presentato al convegno International Conference on the Gnu Regression, Econometrics and Time-series Library) [10.6093/978-88-6887-057-7].

Integer autoregressive modeling: a new gretl routine

Palazzo, Lucio
2019

Abstract

This paper focuses on a family of observation-driven models for autoregressive discrete-valued data, called INAR models. The main purpose of the project is to write and document a set of Gretl Econometric Software functions that perform time series estimation of one-lagged univariate INAR models with Poisson and Negative Binomial marginals.
2019
Integer autoregressive modeling: a new gretl routine / Palazzo, Lucio. - (2019), pp. 95-103. (Intervento presentato al convegno International Conference on the Gnu Regression, Econometrics and Time-series Library) [10.6093/978-88-6887-057-7].
File in questo prodotto:
File Dimensione Formato  
GRETL2019_paper2.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Accesso privato/ristretto
Dimensione 316.31 kB
Formato Adobe PDF
316.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/868454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact