A massive deployment of wind energy in power systems is expected in the near future. However, a still open issue is how to integrate wind generators into existing electrical grids by limiting their side effects on network operations and control. In order to attain this objective, accurate short and medium-term wind speed forecasting is required. This paper discusses and compares a physical (white-box) model (namely a limited-area non hydrostatic model developed by the European consortium for small-scale modeling) with a family of local learning techniques (black-box) for short and medium term forecasting. Also, an original model integrating machine learning techniques with physical knowledge modeling (grey-box) is proposed. A set of experiments on real data collected from a set of meteorological sensors located in the south of Italy supports the methodological analysis and assesses the potential of the different forecasting approaches.
Adaptive local learning techniques for multiple-step-ahead wind speed forecasting / Vaccaro, A; Bontempi, G; Ben Taieb, S; Villacci, D. - In: ELECTRIC POWER SYSTEMS RESEARCH. - ISSN 0378-7796. - 83:2(2012), pp. 129-135. [10.1016/j.epsr.2011.10.008]
Adaptive local learning techniques for multiple-step-ahead wind speed forecasting
Villacci D
2012
Abstract
A massive deployment of wind energy in power systems is expected in the near future. However, a still open issue is how to integrate wind generators into existing electrical grids by limiting their side effects on network operations and control. In order to attain this objective, accurate short and medium-term wind speed forecasting is required. This paper discusses and compares a physical (white-box) model (namely a limited-area non hydrostatic model developed by the European consortium for small-scale modeling) with a family of local learning techniques (black-box) for short and medium term forecasting. Also, an original model integrating machine learning techniques with physical knowledge modeling (grey-box) is proposed. A set of experiments on real data collected from a set of meteorological sensors located in the south of Italy supports the methodological analysis and assesses the potential of the different forecasting approaches.File | Dimensione | Formato | |
---|---|---|---|
31_RI.pdf
non disponibili
Dimensione
504.09 kB
Formato
Adobe PDF
|
504.09 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.