By using the unfolding operators for periodic homogenization, we give a general compactness result for a class of functions defined on bounded domains presenting perforations of two different size. Then we apply this result to the homogenization of the flow of a Bingham fluid in a porous medium with solid obstacles of different size. Next, we give the interpretation of the limit problem in terms of a nonlinear Darcy law. Copyright (C) 2017 John Wiley & Sons, Ltd.

Bingham flow in porous media with obstacles of different size / Bunoiu, R; Cardone, G.. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 40:12(2017), pp. 4514-4528. [10.1002/mma.4322]

Bingham flow in porous media with obstacles of different size

Cardone G.
2017

Abstract

By using the unfolding operators for periodic homogenization, we give a general compactness result for a class of functions defined on bounded domains presenting perforations of two different size. Then we apply this result to the homogenization of the flow of a Bingham fluid in a porous medium with solid obstacles of different size. Next, we give the interpretation of the limit problem in terms of a nonlinear Darcy law. Copyright (C) 2017 John Wiley & Sons, Ltd.
2017
Bingham flow in porous media with obstacles of different size / Bunoiu, R; Cardone, G.. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - 40:12(2017), pp. 4514-4528. [10.1002/mma.4322]
File in questo prodotto:
File Dimensione Formato  
BunoiuCardoneM2AS.pdf

non disponibili

Dimensione 395.65 kB
Formato Adobe PDF
395.65 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/871972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact