Dyslipidemias can affect molecular networks underlying the metabolic homeostasis and vascular function leading to atherogenesis at early stages of development. Since disease-related proteins often interact with each other in functional modules, many advanced network-oriented algorithms were applied to patient-derived big data to identify the complex gene–environment interactions underlying the early pathophysiology of dyslipidemias and atherosclerosis. Both the proprotein convertase subtilisin/kexin type 7 (PCSK7) and collagen type 1 alpha 1 chain (COL1A1) genes arose from the application of TFfit and WGCNA algorithms, respectively, as potential useful therapeutic targets in prevention of dyslipidemias. Moreover, the Seed Connector algorithm (SCA) algorithm suggested a putative role of the neuropilin-1 (NRP1) protein as drug target, whereas a regression network analysis reported that niacin may provide benefits in mixed dyslipidemias. Dyslipidemias are highly heterogeneous at the clinical level; thus, it would be helpful to overcome traditional evidence-based paradigm toward a personalized risk assessment and therapy. Network Medicine uses omics data, artificial intelligence (AI), imaging tools, and clinical information to design personalized therapy of dyslipidemias and atherosclerosis. Recently, a novel non-invasive AI-derived biomarker, named Fat Attenuation Index (FAI™) has been established to early detect clinical signs of atherosclerosis. Moreover, an integrated AI-radiomics approach can detect fibrosis and microvascular remodeling improving the customized risk assessment. Here, we offer a network-based roadmap ranging from novel molecular pathways to digital therapeutics which can improve personalized therapy of dyslipidemias.

Network Medicine Approach in Prevention and Personalized Treatment of Dyslipidemias / Benincasa, G.; de Candia, P.; Costa, D.; Faenza, M.; Mansueto, G.; Ambrosio, G.; Napoli, C.. - In: LIPIDS. - ISSN 0024-4201. - 56:3(2021), pp. 259-268. [10.1002/lipd.12290]

Network Medicine Approach in Prevention and Personalized Treatment of Dyslipidemias

de Candia P.
Secondo
;
2021

Abstract

Dyslipidemias can affect molecular networks underlying the metabolic homeostasis and vascular function leading to atherogenesis at early stages of development. Since disease-related proteins often interact with each other in functional modules, many advanced network-oriented algorithms were applied to patient-derived big data to identify the complex gene–environment interactions underlying the early pathophysiology of dyslipidemias and atherosclerosis. Both the proprotein convertase subtilisin/kexin type 7 (PCSK7) and collagen type 1 alpha 1 chain (COL1A1) genes arose from the application of TFfit and WGCNA algorithms, respectively, as potential useful therapeutic targets in prevention of dyslipidemias. Moreover, the Seed Connector algorithm (SCA) algorithm suggested a putative role of the neuropilin-1 (NRP1) protein as drug target, whereas a regression network analysis reported that niacin may provide benefits in mixed dyslipidemias. Dyslipidemias are highly heterogeneous at the clinical level; thus, it would be helpful to overcome traditional evidence-based paradigm toward a personalized risk assessment and therapy. Network Medicine uses omics data, artificial intelligence (AI), imaging tools, and clinical information to design personalized therapy of dyslipidemias and atherosclerosis. Recently, a novel non-invasive AI-derived biomarker, named Fat Attenuation Index (FAI™) has been established to early detect clinical signs of atherosclerosis. Moreover, an integrated AI-radiomics approach can detect fibrosis and microvascular remodeling improving the customized risk assessment. Here, we offer a network-based roadmap ranging from novel molecular pathways to digital therapeutics which can improve personalized therapy of dyslipidemias.
2021
Network Medicine Approach in Prevention and Personalized Treatment of Dyslipidemias / Benincasa, G.; de Candia, P.; Costa, D.; Faenza, M.; Mansueto, G.; Ambrosio, G.; Napoli, C.. - In: LIPIDS. - ISSN 0024-4201. - 56:3(2021), pp. 259-268. [10.1002/lipd.12290]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/872108
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact