We present evidence that the universal Kovtun-Son-Starinets shear viscosity to entropy density ratio of 1/4π can be associated with a Rindler causal horizon in flat spacetime. Since there is no known holographic (gauge/gravity) duality for this spacetime, a natural microscopic explanation for this viscosity is in the peculiar properties of quantum entanglement. In particular, it is well known that the Minkowski vacuum state is a thermal state and carries an area entanglement entropy density in the Rindler spacetime. Based on the fluctuation-dissipation theorem, we expect a similar notion of viscosity arising from vacuum fluctuations. Therefore, we propose a holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk. We calculate this viscosity assuming a minimally coupled scalar field theory and find that the ratio with respect to the entanglement entropy density is exactly 1/4π in four dimensions. The issues that arise in extending this result to nonminimally coupled scalar fields, higher spins, and higher dimensions provide interesting hints about the relationship between entanglement entropy and black hole entropy. © 2010 The American Physical Society.

Universal viscosity to entropy density ratio from entanglement / Chirco, G.; Eling, C.; Liberati, S.. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - 82:2(2010). [10.1103/PhysRevD.82.024010]

Universal viscosity to entropy density ratio from entanglement

Chirco G.;
2010

Abstract

We present evidence that the universal Kovtun-Son-Starinets shear viscosity to entropy density ratio of 1/4π can be associated with a Rindler causal horizon in flat spacetime. Since there is no known holographic (gauge/gravity) duality for this spacetime, a natural microscopic explanation for this viscosity is in the peculiar properties of quantum entanglement. In particular, it is well known that the Minkowski vacuum state is a thermal state and carries an area entanglement entropy density in the Rindler spacetime. Based on the fluctuation-dissipation theorem, we expect a similar notion of viscosity arising from vacuum fluctuations. Therefore, we propose a holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk. We calculate this viscosity assuming a minimally coupled scalar field theory and find that the ratio with respect to the entanglement entropy density is exactly 1/4π in four dimensions. The issues that arise in extending this result to nonminimally coupled scalar fields, higher spins, and higher dimensions provide interesting hints about the relationship between entanglement entropy and black hole entropy. © 2010 The American Physical Society.
2010
Universal viscosity to entropy density ratio from entanglement / Chirco, G.; Eling, C.; Liberati, S.. - In: PHYSICAL REVIEW D, PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY. - ISSN 1550-7998. - 82:2(2010). [10.1103/PhysRevD.82.024010]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/875239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact