We introduce a reinforcement learning algorithm assisted by a feedback controller. The idea is to enhance tabular learning algorithms by means of a control strategy with limited knowledge of the system model. We show that, by tutoring the learning process, the algorithm converges more quickly than the tabular Q-learning strategy. We use the classical problem of stabilizing an inverted pendulum as a benchmark to numerically illustrate the advantages and disadvantages of the approach.

Tutoring Reinforcement Learning via Feedback Control / De Lellis, F.; Russo, G.; Di Bernardo, M.. - (2021), pp. 580-585. (Intervento presentato al convegno 2021 European Control Conference, ECC 2021 tenutosi a nld nel 2021) [10.23919/ECC54610.2021.9654881].

Tutoring Reinforcement Learning via Feedback Control

De Lellis F.;Di Bernardo M.
2021

Abstract

We introduce a reinforcement learning algorithm assisted by a feedback controller. The idea is to enhance tabular learning algorithms by means of a control strategy with limited knowledge of the system model. We show that, by tutoring the learning process, the algorithm converges more quickly than the tabular Q-learning strategy. We use the classical problem of stabilizing an inverted pendulum as a benchmark to numerically illustrate the advantages and disadvantages of the approach.
2021
978-9-4638-4236-5
Tutoring Reinforcement Learning via Feedback Control / De Lellis, F.; Russo, G.; Di Bernardo, M.. - (2021), pp. 580-585. (Intervento presentato al convegno 2021 European Control Conference, ECC 2021 tenutosi a nld nel 2021) [10.23919/ECC54610.2021.9654881].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/876556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact