Advances in microscopy, microfluidics, and optogenetics enable single-cell monitoring and environmental regulation and offer the means to control cellular phenotypes. The development of such systems is challenging and often results in bespoke setups that hinder reproducibility. To address this, we introduce Cheetah, a flexible computational toolkit that simplifies the integration of real-time microscopy analysis with algorithms for cellular control. Central to the platform is an image segmentation system based on the versatile U-Net convolutional neural network. This is supplemented with functionality to robustly count, characterize, and control cells over time. We demonstrate Cheetah's core capabilities by analyzing long-term bacterial and mammalian cell growth and by dynamically controlling protein expression in mammalian cells. In all cases, Cheetah's segmentation accuracy exceeds that of a commonly used thresholding-based method, allowing for more accurate control signals to be generated. Availability of this easy-to-use platform will make control engineering techniques more accessible and offer new ways to probe and manipulate living cells.

Cheetah: A Computational Toolkit for Cybergenetic Control / Pedone, E.; De Cesare, I.; Zamora-Chimal, C. G.; Haener, D.; Postiglione, L.; La Regina, A.; Shannon, B.; Savery, N. J.; Grierson, C. S.; Di Bernardo, M.; Gorochowski, T. E.; Marucci, L.. - In: ACS SYNTHETIC BIOLOGY. - ISSN 2161-5063. - 10:5(2021), pp. 979-989. [10.1021/acssynbio.0c00463]

Cheetah: A Computational Toolkit for Cybergenetic Control

Postiglione L.;Di Bernardo M.;
2021

Abstract

Advances in microscopy, microfluidics, and optogenetics enable single-cell monitoring and environmental regulation and offer the means to control cellular phenotypes. The development of such systems is challenging and often results in bespoke setups that hinder reproducibility. To address this, we introduce Cheetah, a flexible computational toolkit that simplifies the integration of real-time microscopy analysis with algorithms for cellular control. Central to the platform is an image segmentation system based on the versatile U-Net convolutional neural network. This is supplemented with functionality to robustly count, characterize, and control cells over time. We demonstrate Cheetah's core capabilities by analyzing long-term bacterial and mammalian cell growth and by dynamically controlling protein expression in mammalian cells. In all cases, Cheetah's segmentation accuracy exceeds that of a commonly used thresholding-based method, allowing for more accurate control signals to be generated. Availability of this easy-to-use platform will make control engineering techniques more accessible and offer new ways to probe and manipulate living cells.
2021
Cheetah: A Computational Toolkit for Cybergenetic Control / Pedone, E.; De Cesare, I.; Zamora-Chimal, C. G.; Haener, D.; Postiglione, L.; La Regina, A.; Shannon, B.; Savery, N. J.; Grierson, C. S.; Di Bernardo, M.; Gorochowski, T. E.; Marucci, L.. - In: ACS SYNTHETIC BIOLOGY. - ISSN 2161-5063. - 10:5(2021), pp. 979-989. [10.1021/acssynbio.0c00463]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/876560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact