Cancer immunology is the most rapidly expanding field in cancer research, with the importance of immunity in cancer pathogenesis now well accepted including in the endocrine-related cancers. The immune system plays an essential role in the development of ductal and luminal epithelial differentiation in the mammary gland. Originally identified as evolutionarily conserved antipathogen cytokines, interferons (IFNs) have shown important immune-modulatory and antineoplastic properties when administered to patients with various types of cancer, including breast cancer. Recent studies have drawn attention to the role of tumor- and stromal-infiltrating lymphocytes in dictating therapy response and outcome of breast cancer patients, which, however, is highly dependent on the breast cancer subtype. The emerging role of tumor cell-inherent IFN signaling in the subtype-defined tumor microenvironment could influence therapy response with protumor activities in breast cancer. Here we review evidence with new insights into tumor cell-intrinsic and tumor microenvironment-derived IFN signaling, and the crosstalk of IFN signaling with key signaling pathways in estrogen receptor-positive (ER+) breast cancer. We also discuss clinical implications and opportunities exploiting IFN signaling to treat advanced ER+ breast cancer.
Interferon Signaling in Estrogen Receptor-positive Breast Cancer: A Revitalized Topic / Fu, X.; De Angelis, C.; Schiff, R.. - In: ENDOCRINOLOGY. - ISSN 0013-7227. - 163:1(2022). [10.1210/endocr/bqab235]
Interferon Signaling in Estrogen Receptor-positive Breast Cancer: A Revitalized Topic
De Angelis C.;
2022
Abstract
Cancer immunology is the most rapidly expanding field in cancer research, with the importance of immunity in cancer pathogenesis now well accepted including in the endocrine-related cancers. The immune system plays an essential role in the development of ductal and luminal epithelial differentiation in the mammary gland. Originally identified as evolutionarily conserved antipathogen cytokines, interferons (IFNs) have shown important immune-modulatory and antineoplastic properties when administered to patients with various types of cancer, including breast cancer. Recent studies have drawn attention to the role of tumor- and stromal-infiltrating lymphocytes in dictating therapy response and outcome of breast cancer patients, which, however, is highly dependent on the breast cancer subtype. The emerging role of tumor cell-inherent IFN signaling in the subtype-defined tumor microenvironment could influence therapy response with protumor activities in breast cancer. Here we review evidence with new insights into tumor cell-intrinsic and tumor microenvironment-derived IFN signaling, and the crosstalk of IFN signaling with key signaling pathways in estrogen receptor-positive (ER+) breast cancer. We also discuss clinical implications and opportunities exploiting IFN signaling to treat advanced ER+ breast cancer.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.