We present 97 new high-quality strong lensing candidates found in the final ∼350 deg2 that complete the full ∼1350 deg2 area of the Kilo-Degree Survey (KiDS). Together with our previous findings, the final list of high-quality candidates from KiDS sums up to 268 systems. The new sample is assembled using a new convolutional neural network (CNN) classifier applied to r-band (best-seeing) and g, r, and i color-composited images separately. This optimizes the complementarity of the morphology and color information on the identification of strong lensing candidates. We apply the new classifiers to a sample of luminous red galaxies (LRGs) and a sample of bright galaxies (BGs) and select candidates that received a high probability to be a lens from the CNN (P CNN). In particular, setting P CNN > 0.8 for the LRGs, the one-band CNN predicts 1213 candidates, while the three-band classifier yields 1299 candidates, with only ∼30% overlap. For the BGs, in order to minimize the false positives, we adopt a more conservative threshold, P CNN > 0.9, for both CNN classifiers. This results in 3740 newly selected objects. The candidates from the two samples are visually inspected by seven coauthors to finally select 97 "high-quality"lens candidates which received mean scores larger than 6 (on a scale from 0 to 10). We finally discuss the effect of the seeing on the accuracy of CNN classification and possible avenues to increase the efficiency of multiband classifiers, in preparation of next-generation surveys from ground and space.

High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint / Li, R.; Napolitano, N. R.; Spiniello, C.; Tortora, C.; Kuijken, K.; Koopmans, L. V. E.; Schneider, P.; Getman, F.; Xie, L.; Long, L.; Shu, W.; Vernardos, G.; Huang, Z.; Covone, G.; Dvornik, A.; Heymans, C.; Hildebrandt, H.; Radovich, M.; Wright, A. H.. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 923:1(2021), p. 16. [10.3847/1538-4357/ac2df0]

High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint

Napolitano N. R.;Covone G.;
2021

Abstract

We present 97 new high-quality strong lensing candidates found in the final ∼350 deg2 that complete the full ∼1350 deg2 area of the Kilo-Degree Survey (KiDS). Together with our previous findings, the final list of high-quality candidates from KiDS sums up to 268 systems. The new sample is assembled using a new convolutional neural network (CNN) classifier applied to r-band (best-seeing) and g, r, and i color-composited images separately. This optimizes the complementarity of the morphology and color information on the identification of strong lensing candidates. We apply the new classifiers to a sample of luminous red galaxies (LRGs) and a sample of bright galaxies (BGs) and select candidates that received a high probability to be a lens from the CNN (P CNN). In particular, setting P CNN > 0.8 for the LRGs, the one-band CNN predicts 1213 candidates, while the three-band classifier yields 1299 candidates, with only ∼30% overlap. For the BGs, in order to minimize the false positives, we adopt a more conservative threshold, P CNN > 0.9, for both CNN classifiers. This results in 3740 newly selected objects. The candidates from the two samples are visually inspected by seven coauthors to finally select 97 "high-quality"lens candidates which received mean scores larger than 6 (on a scale from 0 to 10). We finally discuss the effect of the seeing on the accuracy of CNN classification and possible avenues to increase the efficiency of multiband classifiers, in preparation of next-generation surveys from ground and space.
2021
High-quality Strong Lens Candidates in the Final Kilo-Degree Survey Footprint / Li, R.; Napolitano, N. R.; Spiniello, C.; Tortora, C.; Kuijken, K.; Koopmans, L. V. E.; Schneider, P.; Getman, F.; Xie, L.; Long, L.; Shu, W.; Vernardos, G.; Huang, Z.; Covone, G.; Dvornik, A.; Heymans, C.; Hildebrandt, H.; Radovich, M.; Wright, A. H.. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 923:1(2021), p. 16. [10.3847/1538-4357/ac2df0]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/881481
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact