A Cayley map for the special Euclidean group SE(3) is introduced to relate, for a soft continuum robot, the Lie algebra of internal deformations with the Lie group of rigid–body motions. This Cayley map is used for approximated and exact kinematic shape reconstruction of soft continuum robots, under the hypothesis of constant deformations. This map could be used for deriving computationally efficient interpolation schemes for soft robots, since it does not involve transcendental functions as those introduced by the exponential parametrization of soft robot kinematics.

On the Use of Cayley Transform for Kinematic Shape Reconstruction of Soft Continuum Robots / Grazioso, S.; Di Gironimo, G.; Siciliano, B.. - 20:(2022), pp. 867-875. (Intervento presentato al convegno 17th International Symposium of Robotics Research, ISRR 2019 tenutosi a Vietnam nel 2019) [10.1007/978-3-030-95459-8_53].

On the Use of Cayley Transform for Kinematic Shape Reconstruction of Soft Continuum Robots

Grazioso S.;Di Gironimo G.;Siciliano B.
2022

Abstract

A Cayley map for the special Euclidean group SE(3) is introduced to relate, for a soft continuum robot, the Lie algebra of internal deformations with the Lie group of rigid–body motions. This Cayley map is used for approximated and exact kinematic shape reconstruction of soft continuum robots, under the hypothesis of constant deformations. This map could be used for deriving computationally efficient interpolation schemes for soft robots, since it does not involve transcendental functions as those introduced by the exponential parametrization of soft robot kinematics.
2022
978-3-030-95458-1
978-3-030-95459-8
On the Use of Cayley Transform for Kinematic Shape Reconstruction of Soft Continuum Robots / Grazioso, S.; Di Gironimo, G.; Siciliano, B.. - 20:(2022), pp. 867-875. (Intervento presentato al convegno 17th International Symposium of Robotics Research, ISRR 2019 tenutosi a Vietnam nel 2019) [10.1007/978-3-030-95459-8_53].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/883729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact