OECD-PISA survey data include performance measurements, expressed as tables of plausible values, and a variety of socio-biographical information. Such data, if properly modeled, can provide useful insights on the causes of low performing students. A methodology which deals with multivariate sets of plausible values and investigates the effects of context variables without assumptions is required. Here Multiple Factor Analysis with External Information is proposed. Specifically, after defining context variable groupings, a partitioning of the variability structure of the data tables is carried out using projection operators than a simplified Multiple Factor Analysis with bootstrap is performed.

Multiple factor analysis with external information on PISA survey data / Simonacci, Violetta; Marino, Marina; Grassia, MARIA GABRIELLA; Gallo, Michele. - (2022), pp. 359-364. (Intervento presentato al convegno IES 2022 Innovation & Society 5.0: Statistical and Economic Methodologies for Quality Assessment tenutosi a Capua (CE) nel 27-28 Gennaio).

Multiple factor analysis with external information on PISA survey data

Violetta Simonacci
;
Marina Marino;Maria Gabriella Grassia;
2022

Abstract

OECD-PISA survey data include performance measurements, expressed as tables of plausible values, and a variety of socio-biographical information. Such data, if properly modeled, can provide useful insights on the causes of low performing students. A methodology which deals with multivariate sets of plausible values and investigates the effects of context variables without assumptions is required. Here Multiple Factor Analysis with External Information is proposed. Specifically, after defining context variable groupings, a partitioning of the variability structure of the data tables is carried out using projection operators than a simplified Multiple Factor Analysis with bootstrap is performed.
2022
9788894593365
Multiple factor analysis with external information on PISA survey data / Simonacci, Violetta; Marino, Marina; Grassia, MARIA GABRIELLA; Gallo, Michele. - (2022), pp. 359-364. (Intervento presentato al convegno IES 2022 Innovation & Society 5.0: Statistical and Economic Methodologies for Quality Assessment tenutosi a Capua (CE) nel 27-28 Gennaio).
File in questo prodotto:
File Dimensione Formato  
IES_1_with_cover.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 350.68 kB
Formato Adobe PDF
350.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/885294
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact