In the past decade, modular scaffolds prepared by assembling biocompatible and biodegradable building blocks (e.g. microspheres) have found promising applications in tissue engineering (TE) towards the repair/regeneration of damaged and impaired tissues. Nevertheless, to date this approach has failed to be transferred to the clinic due to technological limitations regarding microspheres patterning, a crucial issue for the control of scaffold strength, vascularization and integrationin vivo. In this work, we propose a robust and reliable approach to address this issue through the fabrication of polycaprolactone (PCL) microsphere-based scaffolds with in-silico designed microarchitectures and high compression moduli. The scaffold fabrication technique consists of four main steps, starting with the manufacture of uniform PCL microspheres by fluidic emulsion technique. In the second step, patterned polydimethylsiloxane (PDMS) moulds were prepared by soft lithography. Then, layers of 500µm PCL microspheres with geometrically inspired patterns were obtained by casting the microspheres onto PDMS moulds followed by their thermal sintering. Finally, three-dimensional porous scaffolds were built by the alignment, stacking and sintering of multiple (up to six) layers. The so prepared scaffolds showed excellent morphological and microstructural fidelity with respect to the in-silico models, and mechanical compression properties suitable for load bearing TE applications. Designed porosity and pore size features enabledin vitrohuman endothelial cells adhesion and growth as well as tissue integration and blood vessels invasionin vivo. Our results highlighted the strong impact of spatial patterning of microspheres on modular scaffolds response, and pay the way about the possibility to fabricate in silico-designed structures featuring biomimetic composition and architectures for specific TE purposes.

Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration / Salerno, Aurelio; Palladino, Antonio; Pizzoleo, Carmela; Attanasio, Chiara; Netti, Paolo Antonio. - In: BIOFABRICATION. - ISSN 1758-5082. - 14:4(2022), p. 045002. [10.1088/1758-5090/ac7ad8]

Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration

Salerno, Aurelio
;
Palladino, Antonio;Pizzoleo, Carmela;Attanasio, Chiara
;
Netti, Paolo Antonio
2022

Abstract

In the past decade, modular scaffolds prepared by assembling biocompatible and biodegradable building blocks (e.g. microspheres) have found promising applications in tissue engineering (TE) towards the repair/regeneration of damaged and impaired tissues. Nevertheless, to date this approach has failed to be transferred to the clinic due to technological limitations regarding microspheres patterning, a crucial issue for the control of scaffold strength, vascularization and integrationin vivo. In this work, we propose a robust and reliable approach to address this issue through the fabrication of polycaprolactone (PCL) microsphere-based scaffolds with in-silico designed microarchitectures and high compression moduli. The scaffold fabrication technique consists of four main steps, starting with the manufacture of uniform PCL microspheres by fluidic emulsion technique. In the second step, patterned polydimethylsiloxane (PDMS) moulds were prepared by soft lithography. Then, layers of 500µm PCL microspheres with geometrically inspired patterns were obtained by casting the microspheres onto PDMS moulds followed by their thermal sintering. Finally, three-dimensional porous scaffolds were built by the alignment, stacking and sintering of multiple (up to six) layers. The so prepared scaffolds showed excellent morphological and microstructural fidelity with respect to the in-silico models, and mechanical compression properties suitable for load bearing TE applications. Designed porosity and pore size features enabledin vitrohuman endothelial cells adhesion and growth as well as tissue integration and blood vessels invasionin vivo. Our results highlighted the strong impact of spatial patterning of microspheres on modular scaffolds response, and pay the way about the possibility to fabricate in silico-designed structures featuring biomimetic composition and architectures for specific TE purposes.
2022
Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration / Salerno, Aurelio; Palladino, Antonio; Pizzoleo, Carmela; Attanasio, Chiara; Netti, Paolo Antonio. - In: BIOFABRICATION. - ISSN 1758-5082. - 14:4(2022), p. 045002. [10.1088/1758-5090/ac7ad8]
File in questo prodotto:
File Dimensione Formato  
Neovascularized tissue integration_Biofabrication 2022.pdf

Open Access dal 01/01/2024

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.3 MB
Formato Adobe PDF
3.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/890874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact