Wood flour particleboards (WFP), like other wood-based items, require the addition of fire retardants (FRs) to reduce their high flammability. In this work, a waste lignosulfonate (CaLS) from paper mill is used as a low-cost FR to reduce WFP flammability. CaLS is purified by dialysis and the dialysed lignosulfonate (LD) is used, alone or combined with ammonium polyphosphate (APP), as a FR additive in the preparation of urea-formaldehyde WFP. The fire behaviour of the modified WFPs is studied by cone calorimetry. The use of 15 wt.% LD reduces the peak of heat release rate (HRR) and total smoke production by 25%, also increasing char formation. HRR peak is further reduced up to 40%, if APP is introduced in the formulation. This work discloses a viable and cost-effective strategy for improving the fire retardancy performance of WFP by partial replacement of a commercial FR with a fully renewable additive, isolated through a green and cost-effective process.
Lignosulfonates as fire retardants in wood flour-based particleboards / Angelini, Stefania; Barrio, Aitor; Cerruti, Pierfrancesco; Scarinzi, Gennaro; Garcia-Jaca, Javier; Savy, Davide; Piccolo, Alessandro; Malinconico, Mario. - In: INTERNATIONAL JOURNAL OF POLYMER SCIENCE. - ISSN 1687-9422. - 2019:(2019), pp. 1-10. [10.1155/2019/6178163]
Lignosulfonates as fire retardants in wood flour-based particleboards
Davide Savy;Alessandro Piccolo;
2019
Abstract
Wood flour particleboards (WFP), like other wood-based items, require the addition of fire retardants (FRs) to reduce their high flammability. In this work, a waste lignosulfonate (CaLS) from paper mill is used as a low-cost FR to reduce WFP flammability. CaLS is purified by dialysis and the dialysed lignosulfonate (LD) is used, alone or combined with ammonium polyphosphate (APP), as a FR additive in the preparation of urea-formaldehyde WFP. The fire behaviour of the modified WFPs is studied by cone calorimetry. The use of 15 wt.% LD reduces the peak of heat release rate (HRR) and total smoke production by 25%, also increasing char formation. HRR peak is further reduced up to 40%, if APP is introduced in the formulation. This work discloses a viable and cost-effective strategy for improving the fire retardancy performance of WFP by partial replacement of a commercial FR with a fully renewable additive, isolated through a green and cost-effective process.File | Dimensione | Formato | |
---|---|---|---|
Lignosulfonates as Fire Retardants in Wood Flour-Based Particleboards_Angelini.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
5.38 MB
Formato
Adobe PDF
|
5.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.