In this paper we propose a clustering approach based on the DISTATIS algorithm for the study of time series showing spatial spillover effects. This clustering approach involves the use of a spatio-temporal distance, obtained from the combination of temporal and spatial distances. An application to real time series, related to Euro Area business cycles, enriches this paper.

DISTATIS-based spatio-temporal clustering approach: an application to business cycles’ time series / Mattera, Raffaele; Scepi, Germana. - (2022), pp. 951-956. (Intervento presentato al convegno SiS 2022 -Caserta tenutosi a Caserta nel 22-24 Giugno 2022).

DISTATIS-based spatio-temporal clustering approach: an application to business cycles’ time series

Raffaele Mattera;Germana Scepi
2022

Abstract

In this paper we propose a clustering approach based on the DISTATIS algorithm for the study of time series showing spatial spillover effects. This clustering approach involves the use of a spatio-temporal distance, obtained from the combination of temporal and spatial distances. An application to real time series, related to Euro Area business cycles, enriches this paper.
2022
9788891932310
DISTATIS-based spatio-temporal clustering approach: an application to business cycles’ time series / Mattera, Raffaele; Scepi, Germana. - (2022), pp. 951-956. (Intervento presentato al convegno SiS 2022 -Caserta tenutosi a Caserta nel 22-24 Giugno 2022).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/896338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact