We extend the global invertibility result (Henao et al., Adv Calculus Var 14(2):207–230, 2021) to a class of orientation-preserving Orlicz–Sobolev maps with an integrability just above n − 1, whose traces on the boundary are also Orlicz–Sobolev and which do not present cavitation in the interior or at the boundary. As an application, we prove the existence of a.e. injective minimizers within this class for functionals in nonlinear elasticity.

Invertibility of Orlicz–Sobolev Maps / Scilla, G.; Stroffolini, B.. - 31:(2022), pp. 297-317. [10.1007/978-3-031-04496-0_13]

Invertibility of Orlicz–Sobolev Maps

Scilla G.;Stroffolini B.
2022

Abstract

We extend the global invertibility result (Henao et al., Adv Calculus Var 14(2):207–230, 2021) to a class of orientation-preserving Orlicz–Sobolev maps with an integrability just above n − 1, whose traces on the boundary are also Orlicz–Sobolev and which do not present cavitation in the interior or at the boundary. As an application, we prove the existence of a.e. injective minimizers within this class for functionals in nonlinear elasticity.
2022
978-3-031-04495-3
978-3-031-04496-0
Invertibility of Orlicz–Sobolev Maps / Scilla, G.; Stroffolini, B.. - 31:(2022), pp. 297-317. [10.1007/978-3-031-04496-0_13]
File in questo prodotto:
File Dimensione Formato  
ScillaStroffoliniInvertibility.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 363.78 kB
Formato Adobe PDF
363.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/897603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact